References
1. Keilson, J. and Kooharian, A., “On Time Dependent Queuing processes”,
Annals. of Mathematical Statistics, Vol. 31, (1960), 104-112.
2. Takacs, L., “Delay Distributions for one Line with Poisson Input,
General Holding Times and Various Orders of Service”, Bell System
Technical Journal, Vol. 42, (1963a), 487-504.
3. Hokstad, P., “A Supplementary Variable Technique Applied to the M/G/1
Queue”, Scandinavian Journal of Statistics, Vol. 2,
(1975), 95-98.
4. Bell,
C. E., “Characterization and Computation of Optimal Policies for
Operating an M/G/1 Queuing System with Removable Server”, Oper. Res.,
Vol. 19, (1971), 208-218.
5. Courtois, P. J. and Georges, J., “On a single-server finite queuing
model with state-dependent arrival and service processes” Oper. Res.,
Vol. 19, (1971), 424-435.
6. Herzog, U., Woo, L. and Chandy, K. M., “Solution of Queuing Problems
by a Recursive Technique”. IBM J. Res. Develop,
Vol. 19, (1975), 295-300.
7. Gupta, U. C. and Srinivasa Rao, T. S. S., “A recursive Method to
Compute the Steady-State Probabilities of the Machine Interference Model” (M/G/1)/K.
Computers and Operations Research, Vol. 21, (1994),
597-605.
8. Zhang, Z. G. and Love, C. E., “The Threshold Policy in the M/G/1
Queue with an Exceptional First Vacation”, INFOR., Vol. 36, No.
4, (1998), 193-204.
9. Wang, K. H., Chang, K. W. and Sivazlian, B. D., “Optimal Control of a
Removable and Non-Reliable Server in an Infinite and a Finite M/H2/1 Queuing System”,
Appl. Math. Model, Vol. 23, (1999), 651-666.
10. Lillo, R. E. and Martin, M., “On Optimal Exhaustive Policies for the
M/G/1 Queue”. Oper. Res. Lett., Vol. 27, (2000), 39-46.
11. Wang, K. H. and Ke, J. C., “A Recursive Method to the Optimal
Control of an M/G/1 Queuing System with finite Capacity and Infinite Capacity”,
Appl. Math. Model, Vol. 24, (2000), 899-914.
12. Yadin, M. and Naor, P., “Queuing Systems with Removable Service
Stations”, Oper. Res. Quart., Vol. 14, (1963), 393-405.
13. Wang, K. H. and Huang, H. M., “Optimal Control of an M/Ek/1 Queuing
System with a Removable Service Station”, OPSEARCH, Vol. 46,
(1995), 1014-1022.
14. Jain, M., “N-Policy for Redundant Repairable System with Additional
Repairmen”, OPSEARCH, Vol. 40, No. 2, (2003), 97-114.
15. Jain, M., Sharma, G. C. and Singh, M., “N-Policy for Degraded
Machining System with Spares and Server Breakdowns”, IJOMAS.,
Vol. 18/19 (In press), (2003).
16. Takacs, L., “A Single-Server Queue with Feedback”, The Bell System Technical
Journal, Vol. 42, No. 2, (1963b), 505-519.
17. Heyman, D. P, “Optimal Operating Policies for M/G/1 Queuing system”.
Oper. Res., Vol. 16, (1968), 362-382.
18. Disney, R. L., McNickle, D. C. and Simon, B., “The M/G/1 Queue with
Instantaneous Bernoulli Feedback” Naval Res. Logist. Quart., Vol.
27, (1980), 635-644.
19. Disney, R. L., “A Note on Sojourn Times in M/G/1 Queues with
Instantaneous, Bernoulli Feedback” Nav. Res. Logist. Quart.,
Vol. 27, (1981), 679-684.
20. Fontana,
B. and Berzosa, C. D., “Stationary Queue- Length Distribution in an M/G/1 Queue
with Two Non- Preemptive Priorities and General Feedback. Performance of
Computer-Communication Systems”, Ed. W. Bux and H. Rudin, Elsevier,
North-Holland, Amsterdam,
(1984), 333-347.
21. Simon, B., “Priority Queues with Feedback”, J. Assoc. Comput.
Mach., Vol. 31, (1984), 134-149.
22. Takine, T. A., Takagi, H. and Hasegawa, T., “Sojourn Times in
Vacation and Polling Systems with Bernoulli Feedback”, J. Appl. Prob,
Vol. 28, (1991), 422-432.
23. Gong, W. B., Yan, A. and Gassandras, C. G., “The M/G/1 Queue with
Queue-Length Dependent Arrival Rate”, Comm. Statist. Stochastic Models,
Vol. 8, No. 4, (1992), 733-741.
24. Takagi, H., “A Note on the Response Time in M/G/1 Queue with Service
in Random Order and Bernoulli Feedback”, J. Oper. Res. Soc. of Japan,
Vol. 39, No. 4, (1996), 486-500.
25. Boxma, O. J. and Yechiali, U., “An M/G/1 Queue with Multiple Types
of Feedback and Gated Vacations”, J. Appl. Prob.,
Vol. 34, (1997), 773-784.
26. Medhi, J., “Response Time in an M/G/1 Queuing System with Bernoulli
Feedback”, Recent Developments in Operational Research, Ed. M.L. Agarwal and K.
Sen, Narosa Publishing House, New Delhi, India, (2001), 249-259.
27. Wang, K.H. and Kuo, C.C., “Cost and Probabilistic Analysis of Series
Systems with Mixed Standby Components”, Appl. Math. Model, Vol.
24, (2000), 957-967.
28. Gupta, U. C. and Srinivasa Rao, T. S. S., “On the Machine
Interference Model with Spares, Euro”. J. Oper. Res,
Vol. 89, (1996), 164-171.
|