References
1. Crank. J free and moving Boundary Problems. Oxford Science publications, New York (1984).
2. Alexiades. V and Solomon. A. D Mathematical modeling of melting and Freezing Processes. Hemisphere, Washington (1993).
3. Salcudean. M and Abdullah. Z on the numerical modeling of head transfer during solidification process int. J. number. Mech. Eng. 25, 445473 (1998).
4. Zerroukat.M Chatwin. C. R Computational Moving Botundary Problems. John wiley, New York (1994).
5. Argyropoulos. S. A and Gutbrie. R. I. L, The dissolution of titanium in liquid steel. Metall. Trans. B 15B, 4758 (1984).
6. Argyropoulos. S. A and Sismanis. P. G, The mass transfer kinetics of niobium solution into liquid steel, Metall. Trans. B 22B, 417427 (1991).
7. Schad. J, Argyropoulos. S. A and Mclean. A, Assimilation and recovery characteristics of innovate cored wire additions for steelmaking, Can. Metall. Quarl. 30, 213
225 (1991).
8. yeh. FH. Ming and, Dongho. C cool thermal discharges from melting with specified heat fluxes on the boundary, energy Vol. 21, No. 6, 455 461.
9. Jekel.T. B, Mitchell. J. W, klein S. A, Modeling of ice storage tanks, ASHRAE transection, 1993 Vol. 99 (1), pp. 1016 1024.
10. Cavaca. H, Caldus. M, Semiao. V, Temperature distribution around polar habitation modules buried in Ice: numerical modeling Cold Regions Science and tech, 32 (2001) 45 62.
11. Shiva Kuma. P. N., CFD Solution of ice melting problem on Transmission lines in cold climate A Parallel computing approach http: //home. cc. Umanitoba. Ca/ ~Shivaku/
12. Farid. Mohammad, A unified approach to the heat and mass transfer in melting, solidification, frying and different drying processes, chemical Engineering science 56 (2001) 5419 5427.
13. Hongfa Hu and Stavors Argyropoulos. A, Mathematical modeling and experimental measurement of moving boundary problems associated with exothermic heat of mixing Int . J. Heat mass Transfer, Vol. 39, No. 5 (1996).
14. Gebhart, B., and Shaukatullah, H. Buoyancy Induced Flows Adjacent to Horizontal Surfaces in Water Near Its Density Extremum, International Journal Of Heat transfer, Vol. 22, pp. 137 149, (1979).
15. Wilson, N. W. and Lee, J. J. Melting of A Vertical Ice wall by free Convection into Fresh Water, Journal of Heat Transfer, Vol. 22, pp. 1317 (1989).
16. Wang, C. A Multiple Numerical Solutions of A Vertical Ice Wall Melting in Saturated Porous Media, Computers and Mathematics with Applications, Vol. 14, Part 7, pp. 527 540 (1987).
17. Carey, Van P., Gebhart, B, and Mollendorf, J. C. Buoyancy Force Reversals in Vertical Natural Convection Flows in Cold Water, Journal of Fluid Mechanics, Vol. 97, Part 2, pp. 279297 (1980).
18. Carey, Van P. and Gebhart, B, Visualization of the Flow Adjacent to Vertical Ice Surface Melting In Cold Pure Water, Journal of Fluid Mechanics, Vol. 107, pp. 37 45 (1980).
19. Wilson, N. W. and Vyas, B. D. Velocity Profiles near a Vertical Ice Surface Melting Into Fresh Water, Journal of Heat Transfer, Vol. 101, pp. 313317 (1979).
20. Oosthuizen, P. H. and Xu, Z. Three Dimensional Natural Convective Flow About A Melting Horizontal Ice Cylinder, Proceedings of the ASME Heat Transfer Division, Vol. 3, pp. 277282 (1997).
21. Gebhart, B, and Wang, T. An Experimental Study of Melting Vertical Ice Cylinders in Cold Water, Chemical Engineering Communications, Vol. 13, pp. 197 278 (1981).
22. Fukasako, S. and Yamada, M. Recent Advances in Research on water Freezing and Ice Melting Problems, experimental Thermal and Fluid Science, Vol. 6, part 1, pp. 90105 (1993).
23. Sparrow, E. M., Patankar, S. V, and Ramadhyani, S. Analysis of Melting In The Presence of Natural Convection in the Melt Region, Transactions of the ASME: Journal of Heat Transfer, Vol. 99, pp. 520 526 (1977)
24. Ng, K. W., Gong Z. X. and Mujumdar, A. S. Heat Transfer in free convection Dominated melting of A phase change material International communications in Heat and mass transfer,Vol. 25, No. 5, pp. 631640 (1998).
25. Yongke W. and Lactoix, M. Analysis of Natural Convection Melting of A Vertical Ice Cylinder Involving Density Anomaly, International Journal of Numerical Methods in Heat Transfer and Fluid Flow,Vol. 3, pp. 445456 (1993).
26. Watanabe, K., et al., 1998 slip of Newtonian fluids at solid boundary international journal of JSME Seri. B Vol. 41, No. 3, pp. 525529.
27. S. A. sherif, W. E. lear, N. S. winowich, effect of slip velocity journal of fluids engineering (2000) vol. 122.
28. watanabe. K, Akino.T, Drag reduction in laminar flow between two vertical coaxial cylinders, journal of fluid engineering (1999) vol.121.
29. watanabe. K, udagawa. H, Drag reduction of nonNewtonian fluids in a circular pipe with a highly waterrepellent wall.
30. watanabe, K., Yanuar, K. okido and H. Mizunuma, Drag reduction in flow through square and rectangular with highly waterreplant walls, JSME int. j. ser B 62, 3330 (1996).
31. Watanabe, K., and S. Ogata, Drag reduction for a rotating disk with highly water repellent wall in Newtonian fluids, JSME int. j. ser. B. 41. 556 (1998).
32. Watanabe. K., Yanuar, and Udagawa. H, Drag reduction of Newtonian fluid in a circular pipe with a highly waterrepellent wall, J. Fluid mech., 225 (1999).
33. Gao.Y, Faghri. A and chang. W, A numerical analysis of Stefan problems for generalized multidimensional phasechange structures using the enthalpy transforming model. Int. J. heat mass transfer 32, 12891298 (1989).
34. Patankar S. V. Numerical Heat Transfer and fluid flow. McGrawHill, New York (1980).
35. Gebbart. B. and Mollendorf, J. C. A new density relation for pure and saline water, deep sear res. 24 pp. 831840, 1977.
36. Churchill, S. W. , and H. Ozoe , correlation for Laminar Forced convection in flow over and Fully Developed Flow in Isothermal Tube, J. Heat Transfer, vol. 95, p. 46 , 1973.
37. Shames es H. Fluids mechanic 1st ed. 1982.
