Abstract




 
   

Vol. 18, No. 3 (August 2005) 253-261   

downloaded Downloaded: 55   viewed Viewed: 1711

  EFFECTS OF SLIP CONDITION ON THE CHARACTERISTIC OF FLOW IN ICE MELTING PROCESS
 
A. Raoufpanah

Islamic Azad University, Tehran, Iran, a _ raouf panah @ yahoo.com

M. Rad, A. Nouri Borujerdi

Department of Mechanical Engineering, Sharif University of Technology, Tehran, Iran
rad@sharif.edu, anouri@sharigf.edu

 
( Received: May 24, 2004 )
 
 

Abstract    In this paper a laminar flow of water on an ice layer subjected to a slip condition is considered numerically. The paper describes a parametric mathematical model to simulate the coupled heat and mass transfer events occurring in moving boundary problems associated with a quasi steady state steady flow process. The discretization technique of the elliptic governing differential equations of mass, momentum and energy is based on the control volume finite difference approach and enthalpy method. the results illustrate, the distribution of heat transfer coefficient, ice melting thickness, slip velocity at solid moving boundary and boundary layer thickness for some values of slip velocity coefficient , Cu.

 

Keywords    Slip velocity; Moving boundary; Melting

 

References   

 
1. Crank. J “free and moving Boundary Problems”. Oxford Science publications, New York (1984).

2. Alexiades. V and Solomon. A. D “Mathematical modeling of melting and Freezing Processes”. Hemisphere, Washington (1993).

3. Salcudean. M and Abdullah. Z “on the numerical modeling of head transfer during solidification process” int. J. number. Mech. Eng. 25, 445-473 (1998).

4. Zerroukat.M Chatwin. C. R “Computational Moving Botundary Problems”. John wiley, New York (1994).

5. Argyropoulos. S. A and Gutbrie. R. I. L, The dissolution of titanium in liquid steel. Metall. Trans. B 15B, 47–58 (1984).

6. Argyropoulos. S. A and Sismanis. P. G, The mass transfer kinetics of niobium solution into liquid steel, Metall. Trans. B 22B, 417–427 (1991).

7. Schad. J, Argyropoulos. S. A and Mclean. A, Assimilation and recovery characteristics of innovate cored wire additions for steelmaking, Can. Metall. Quarl. 30, 213 … 225 (1991).

8. yeh. FH. Ming and, Dongho. C cool thermal discharges from melting with specified heat fluxes on the boundary, energy Vol. 21, No. 6, 455- 461.

9. Jekel.T. B, Mitchell. J. W, klein S. A, Modeling of ice storage tanks, ASHRAE transection, 1993 Vol. 99 (1), pp. 1016 – 1024.

10. Cavaca. H, Caldus. M, Semiao. V, Temperature distribution around polar habitation modules buried in Ice: numerical modeling Cold Regions Science and tech, 32 (2001) 45- 62.

11. Shiva Kuma. P. N., CFD Solution of ice melting problem on Transmission lines in cold climate A Parallel computing approach http: //home. cc. Umanitoba. Ca/ ~Shivaku/

12. Farid. Mohammad, A unified approach to the heat and mass transfer in melting, solidification, frying and different drying processes, chemical Engineering science 56 (2001) 5419- 5427.

13. Hongfa Hu and Stavors Argyropoulos. A, “Mathematical modeling and experimental measurement of moving boundary problems associated with exothermic heat of mixing” Int
. J. Heat mass Transfer, Vol. 39, No. 5 (1996).

14. Gebhart, B., and Shaukatullah, H. Buoyancy Induced Flows Adjacent to Horizontal Surfaces in Water Near Its Density Extremum, International Journal Of Heat transfer, Vol. 22, pp. 137- 149, (1979).

15. Wilson, N. W. and Lee, J. J. Melting of A Vertical Ice wall by free Convection into Fresh Water, Journal of Heat Transfer, Vol. 22, pp. 13-17 (1989).

16. Wang, C. A Multiple Numerical Solutions of A Vertical Ice Wall Melting in Saturated Porous Media, Computers and Mathematics with Applications, Vol. 14, Part 7, pp. 527- 540 (1987).

17. Carey, Van P., Gebhart, B, and Mollendorf, J. C. Buoyancy Force Reversals in Vertical Natural Convection Flows in Cold Water, Journal of Fluid Mechanics, Vol. 97, Part 2, pp. 279-297 (1980).

18. Carey, Van P. and Gebhart, B, Visualization of the Flow Adjacent to Vertical Ice Surface Melting In Cold Pure Water, Journal of Fluid Mechanics, Vol. 107, pp. 37- 45 (1980).

19. Wilson, N. W. and Vyas, B. D. Velocity Profiles near a Vertical Ice Surface Melting Into Fresh Water, Journal of Heat Transfer, Vol. 101, pp. 313-317 (1979).

20. Oosthuizen, P. H. and Xu, Z. Three- Dimensional Natural Convective Flow About A Melting Horizontal Ice Cylinder, Proceedings of the ASME Heat Transfer Division, Vol. 3, pp. 277-282 (1997).

21. Gebhart, B, and Wang, T. An Experimental Study of Melting Vertical Ice Cylinders in Cold Water, Chemical Engineering Communications, Vol. 13, pp. 197- 278 (1981).

22. Fukasako, S. and Yamada, M. Recent Advances in Research on water Freezing and Ice Melting Problems, experimental Thermal and Fluid Science, Vol. 6, part 1, pp. 90-105 (1993).

23. Sparrow, E. M., Patankar, S. V, and Ramadhyani, S. Analysis of Melting In The Presence of Natural Convection in the Melt Region, Transactions of the ASME: Journal of Heat Transfer, Vol. 99, pp. 520- 526 (1977)

24. Ng, K. W., Gong Z. X. and Mujumdar, A. S. Heat Transfer in free convection Dominated melting of A phase change material International communications in Heat and mass transfer,Vol. 25, No. 5, pp. 631-640 (1998).

25. Yongke W. and Lactoix, M. Analysis of Natural Convection Melting of A Vertical Ice Cylinder Involving Density Anomaly, International Journal of Numerical Methods in Heat Transfer and Fluid Flow,Vol. 3, pp. 445-456 (1993).

26. Watanabe, K., et al., 1998 “slip of Newtonian fluids at solid boundary” international journal of JSME Seri. B Vol. 41, No. 3, pp. 525-529.

 27. S. A. sherif, W. E. lear, N. S. winowich, effect of slip velocity journal of fluids engineering (2000) vol. 122.

28. watanabe. K, Akino.T, Drag reduction in laminar flow between two vertical coaxial cylinders, journal of fluid engineering (1999) vol.121.

29. watanabe. K, udagawa. H, Drag reduction of non-Newtonian fluids in a circular pipe with a highly water-repellent wall.

30. watanabe, K., Yanuar, K. okido and H. Mizunuma, “Drag reduction in flow through square and rectangular with highly water-replant walls”, JSME int. j. ser B 62, 3330 (1996).

31. Watanabe, K., and S. Ogata, “Drag reduction for a rotating disk with highly water repellent wall in Newtonian fluids”, JSME int. j. ser. B. 41. 556 (1998).

32. Watanabe. K., Yanuar, and Udagawa. H, “Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall”, J. Fluid mech., 225 (1999).

33. Gao.Y, Faghri. A and chang. W, A numerical analysis of Stefan problems for generalized multi-dimensional phase-change structures using the enthalpy transforming model. Int. J. heat mass transfer 32, 1289-1298 (1989).

34. Patankar S. V. Numerical Heat Transfer and fluid flow. McGraw-Hill, New York (1980).

35. Gebbart. B. and Mollendorf, J. C. A new density relation for pure and saline water, deep sear res. 24 pp. 831-840, 1977.

36. Churchill, S. W. , and H. Ozoe , correlation for Laminar Forced convection in flow over and Fully Developed Flow in Isothermal Tube, J. Heat Transfer, vol. 95, p. 46 , 1973.

37. Shames es H. Fluids mechanic 1st ed. 1982.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir