References
1. Park, K. C., “A Famiy of Solution Algorithms for Non-linear Structural Analysis Based on the Relaxation Equations”, Int. J. Numer. Meth. Engng., 18, (1984), 1337-1347.
2. Zienkiewicz, O. C. and Lohner, R., “Accelerated Relaxation or Direct Solution Future Prospects for FEM”, Int. J. Num. Meth. Eng., Vol. 21, (1985), 1-11.
3. Rechardson, L. F., “The Approximate Arithmetical Solution by Finite Difference of Physical Problems Involving Differential Equations, with an Application to the Stresses in a Masonary Dam”, R. Soc. London Phil. Trans. A 210, (1911), 307-357.
4. Casstell et al., “Cylindrical Shell Analysis by Dynamic Relaxation”, Proc. Inst. Civ. Engrs., Vol. 39, (1968), 75-84.
5. Welsh, A. K., “Discusstion on Dynamic Relaxation”, Proc. Inst. Civ. Engrs., Vol. 37, (1967), 723-750.
6. Rushton, K. R., “Large Deflection of Variable - Thickness Plates”, Int. J. Mech. Sci., Vol. 10, (1968), 723-735.
7. Wood, W. L., “Comparison of Dynamic Relaxation with Three Other Iterative Methods”, Engineer, Vol. 224, (1967), 683-687.
8. Felippa, C. A., “Dynamic Relaxation and Quasi-Newton Method”, Numerical Pineridge Press, Sawnsea, UK, (1984).
9. Zhang, L. C., Kadkhodayan, M. and Mai, Y. W., “Development of the maDR Method”, Comput. Struc., Vol. 52, No. 1, (1994), 1-8.
10. Brew, J. S. and Brotton, M., “Non - Linear Sturctural Analysis by Dynamic Ralaxation”, Int. J. Num. Meth. Eng., Vol. 3, (1971), 463-483.
11. Underwood, P., “Dynamic Relaxation, in Computational Method for Transient Analysis”, Chapter 5, Elsevier, Amesterdam, (1983), 245-256.
12. Zhang, L. C. and Yu, T. X., “Modified Adaptive Dynamic Relaxation Method and Its Application to Elastic-Plastic Bending and Wrikling of Circular Plates”, Comput. Struc., Vol. 34, No. 2, (1989), 609-614.
13. Shizhong, Q., “An Adaptive Dynamic Relaxation Method for Non - Linear Problems”, Comput. Struc., Vol. 30, No. 4, (1988), 855-859.
14. Crisfield, M. A., “Nonlinear Finite Element Analysis of Solids and Structures”, Advanced Topics, John Wiley and Sons Ltd., Vol. 2, (1997).
15. Ramesh, G. and Krishnamoorthy, C. S., “Inelastic Post-Buckling Analysis of Truss Structures by Dynamic Relaxation”, Int. Num. Meth. Eng., Vol. 37, (1994), 3633-3657.
16. Krenk, S. and Hededal, O., “A Dual Ortogonality Procedure for Non - linear Finite Element Equations”, Comput. Meth. Appl. Mech. Eng., Vol. 123, (1975), 95-107.
17. Ramesh, G. and Krishnamoorthy, C. S., “Post - Buckling Analysis of Structures by Dynamic Relaxation”, Int. Num. Meth. Eng., Vol. 36, (1993), 1339-1364.
18. Norris, C. H., Wilber, J. B. and Utku, S., “Elementary Structural Analysis”, Third edition, McGraw Hill, NY, USA, (1976).
19. Forde, B. W. R. and Stiemer, S. F., “Improved Arc Length Orthogonality Methods for Non-Linear Finite Element Analysis”, Comput. Struc., Vol. 27, No. 5, (1987), 625-630.
|