Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 22, No. 4 (November 2009) 351-358   

downloaded Downloaded: 297   viewed Viewed: 1860

  ANN BASED MODELING FOR PREDICTION OF EVAPORATION IN RESERVOIRS (RESEARCH NOTE)
 
 
A. Goel

Department of Civil Engineering, National Institute of Technology, Deemed University
Kurukshetra 136119, Haryana, India
drarun_goel@yahoo.co.in
 
 
( Received: October 16, 2008 – Accepted in Revised Form: July 02, 2009 )
 
 

Abstract    This paper is an attempt to assess the potential and usefulness of ANN based modeling for evaporation prediction from a reservoir, where in classical and empirical equations failed to predict the evaporation accurately. The meteorological data set of daily pan evaporation, temperature, solar radiation, relative humidity, wind speed is used in this study. The performance of feed forward back propagation neural network model is compared with the linear regression on the basis of performance parameters (correlation coefficient and rmse) having different combinations of input parameters. The comparison of results shows that there is a better agreement when large input parameters are considered for model building and testing as compared to a single parameter. The outcome of study suggests that the feed forward back propagation ANN based modeling can be applied as an alternative approach for estimation of daily evaporation from reservoirs effectively.

 

Keywords    Linear Regression, Neural Network, Correlation Coefficient, Evaporation

 

چکیده    در اين مقاله تلاش شده تا امکان و قابليت هاي مدل سازي بر پايه ANN به منظور پيش بيني تبخير از يک مخزن در حالتي که معادلات کلاسيک و تجربي نتوانسته اند تبخير را به طور دقيق پيش بيني کنند، سنجيده شود. يک دسته داده هاي هواشناسي شامل تبخير سطحي روزانه، دما، تشعشع خورشيدي، رطوبت نسبي و سرعت باد در اين مطالعه استفاده شده است. ترکيب هاي مختلفي از پارامترها به عنوان ورودي اعمال مي شود و به ازاي آن عملکرد پس انتشار فيد فوروارد در مدل شبکه عصبي با بازگشت خطي بر اساس پارامترهاي عملکرد (ضريب همبستگي و rmse) مقايسه مي گردد. مقايسه نتايج نشان مي دهد که وقتي براي ساخت و آزمايشِ مدل، پارامترهاي ورودي، بيشتر در نظر گرفته مي شوند، در مقايسه با حالت تک پارامتري هم خواني بهتري مشاهده مي شود. اين مطالعه نشان مي دهد که مدل سازي پس انتشار فيد فوروارد بر پايه ANN مي تواند به عنوان يک رويکرد جايگزين و کارآ براي تخمين تبخير روزانه از مخازن اعمال گردد.

References   

1. Singh, V.P. and Xu, C.Y., “Evaluation and Generalization of 13 Mass Transfer Equations for Determining Free Water EvaporationHydrological Processes, Vol. 11, (1997), 313-323.

2. Dariane, A.B., “Reservoir Operation During Drought”, International Journal of Engineering Transcations B: Applications, Vol 16, No. 3, (2003), 209-216.

3. Abtew, W., “Evaporation Estimation of Lake Okeechobee in South Florida”, J. of Irrigation and Drainage, Vol. 127, No. 3, (2001), 140-147.

4. Choudhury, B.J.,“Evaluation of an Empirical Equation for Annual Evaporation using Field Observations and Results from Biophysical Model”, J. of Hydrology, Vol. 216, (1999), 99-110.

5. Vallet-Coulomb, Legesse, C., Gasse, D., Tavi, F. and Chernet, T., “Lake Evaporation Estimates in Tropical Africaa (Lake Ziway, Ethopia)”, J. of Hydrology, Vol. 245, (2001), 1-18.

6. Terzi, O. and Keskin, M.E., “Modeling of Daily Pan Evaporation”, J. of Applied Sciences, Vol. 5, (2005), 368-372.

7. Rosenberry, D.O., Winter, T.C., Buso, D.C. and Likens, G.E., “Comparison of 15 Evaporation Methods Applied to a Small Mountain Lake in the Northeastern U.S.A.”, J. of Hydrology, Vol. 340, (2007), 149-166.

8. ASCE Task Committee on Application of ANNs in Hydrology “Artificial Neural Networks in Hydrology, I: Preliminary Concepts”, J. Hydraulic Engineering, ASCE, Vol. 5, No. 2, (2000a), 115-123.

9. ASCE Task Committee on Application of ANNs in Hydrology, “Artificial Neural Networks in Hydrology, II: Hydrologic Applications”, J. Hydraulic Engineering, ASCE, Vol. 5, No. 2, (2000b), 124-137.

10. Zealand, C.M., Burns, D.H. and Simonovic, S.P. “Short Term Stream Forecasting using Artificial Neural Networks”, J. of Hydrology, Vol. 214, (1999), 32-48.

11. Luk, K.C., Ball, J.E. and Sharma, A., “A Study of Optimal Model Lag and Spatial Inputs to Artificial Neural Network for Rainfall Forecasting”, J. of Hydrology, Vol. 227, (2000), 56-65.

12. Tokar, A.S. and Johnson, P.A., “Rainfall Runoff Modeling using Artificial Neural Network.” J. of Hydraulic Engineering, Vol. 4, No. 3, (1999), 232-239.

13. Mohammadi, K, Eslami, H.R. and Dardashti Dayyani, Sh., “Comparison of Regression, ARIMA and ANN Models for Reservoir Inflow Forecasting using Snowmelt Equivalent (A Case Study of Karaj)”, J. of Agricultural Sciences Technology, Vol.7, (2005), 17-30.

14. Terzi O., Erol, K.M. and Eliek, T.E., “Estimating Evaporation using ANFIS”, Journal of Irrigation and Drainage Engineering, Vol. 132, No. 5, (2006), 503-507.

15. Eskin, M.E. and Erzi, O., “Artificial Neural Network Models of Daily Pan Evaporation”, Journal of Hydrologic Engineering, Vol. 11, No. 1, (2006), 65-70.

16. Kokya, B.A. and Kokya, T.A. “Proposing a Formula for Evaporation Measurement from Salt Water Resources”, International Journal of Hyrological Processes, Vol 22, (2008), 2005-2012.

17. Eslamian, S.S., Gohari, S.A., Biabanaki, M. and Malekian, R., “Estimation of Monthly Pan Evaporation using Artificial Neural Networks and Support Vector Machines”, J. of Applied Sciences, Vol.8, No. 19, (2008) 3497-3502.

18. Moghaddamnia, A., Ghafari, M., Piri, J. and Han, D., “Evaporation Estimation using Support Vector Machines Technique”, Proceedings of World Academy of Science, Engineering and Technology, Vol. 33, No. 9, (2008), 14-22.

19. Moghaddamnia, A., Goushehe Ghafari, M., Piri, J., Amin, S. and Han, D., “Evaporation Estimation using Artificial Neural Networks and Adaptive Neuro-Fuzzy Inference System Techniques”, J. of Advances in Water Resources, Vol. 32, No. 1, (2009), 88-97.

20. Murthy, S. and Gawande, S., “Effect of Meteorological Parameters on Evaporation in Small Reservoirs Annad Sagar Shegaon-A Case Study”, Journal of Perdushan Nimulan, Vol. 3, No. 2, (2006), 52-56.

21. Rumelhart, D.E., Hinton, G.E. and Williams, R.J., “Learning Internal Representation by Error Propagation, In: Parallel Distributed Processing: Explorations, in the Microstructures of Cognition”, Cambridge, MIT Press, (1996), 318-362.

22. Bhattacharya, B. and Solomatine, D.P., “Application of Artificial Neural Network inStage Discharge Relationship”, Proceedings of 4th International Conference on Hydro Informatics, Iowa, U.S.A., (2000).

23. Weka 3 Data Mining with Open Source Machine Learning Software, www.cs.waikato.ac.nz/ml/, (2009).






International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir