Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 22, No. 4 (November 2009) 369-378   

downloaded Downloaded: 132   viewed Viewed: 1891

  MULTI-DIMENSIONAL MODELING OF THE EFFECTS OF SPLIT INJECTION SCHEME ON COMBUSTION AND EMISSIONS OF DIRECT-INJECTION DIESEL ENGINES AT FULL LOAD STATE
 
 
S. Jafarmadar*
Faculty of Engineering, University of Urmia
P.O. Box 57561-15311, Urmia, Iran
s.jafarmadar@mail.urmia.ac.ir

A. Zehni
Faculty of Mechanical Engineering, University of Tabriz
P.O. Box 57561-15311, Tabriz, Iran
alborz.zehni@gmail.com

* Corresponding Author
 
 
( Received: September 02, 2008 – Accepted in Revised Form: February 19, 2009 )
 
 

Abstract    One of the important problems in reducing pollutant emission from diesel engines is trade-off between soot and NOx. Split injection is one of the most powerful tools that decrease soot and NOx emissions simultaneously. At the present work, the effect of split injection on the combustion process and emissions of a direct-injection diesel engine under full-load conditions is investigated by the commercial CFD code AVL-FIRE. The study of injection timing and split injection parameters, including the delay dwell and the fuel quantity injected between injection pulses is carried out. Three different split injection schemes, in which 10-20-25 % of total fuel is injected in the second pulse, have been considered. The results show that 25 % of total fuel injected in the second pulse, reduces the total soot and NOx emissions effectively in DI diesel engines. In addition, the optimum delay dwell between the pulses is about 25°CA. The predicted values of combustion process, emission and delay dwell by this CFD model show a good agreement with the corresponding data of multi-zone phenomenological combustion model in the literature.

 

Keywords    Split injection, Combustion, Emission, NOx, Soot

 

چکیده    يکي از مهم ترين مسائل در کاهش آلاينده هاي موتورهاي ديزلي، تقابل آلاينده هاي اکسيد نيتروژن و دوده است. تزريق چند گانه يکي از قوي ترين ابزارها براي کاهش همزمان اين دو آلاينده است. در اين تحقيق با نرم افزار تجاري ديناميک سيالات محاسباتي فاير، تأثير تزريق چندگانه بر فرآيند احتراق و آلايندگي موتور ديزلي تزريق مستقيم تحت بار کامل بررسي شده است. زمان تزريق و پارامترهاي تزريق چندگانه که شامل زمان تأخير و مقدار سوخت تزريق شده در خلال پالس هاي تزريق، مطالعه شده است. سه الگوي متفاوت تزريق که به ترتيب 10، 20 و 25 درصد کل سوخت در پالس دوم تزريق مي باشد در نظر گرفته شده است. نتايج نشان مي دهند که 25 درصد کل سوخت تزريق شده در پالس دوم آلاينده هاي اکسيد نيتروژن و دوده به طور چشمگير و همزمان در موتور ديزلي تزريق مستقيم کاهش مي يابد. به علاوه، زمان تأخير بهينه در خلال پالس هاي تزريق 25 درجه ميل لنگ است. نتايج پيشگويي شدة احتراق، آلايندگي و تأخير پالس هاي تزريق با مدل ديناميک سيالات محاسباتي استفاده شده، توافق خوبي را با نتايج حاصل از مدل هاي شبه چند بعدي موجود در ادبيات فن نشان مي دهد.

References   

1. Li, J., Chae, J., Lee, S. and Jeong, J.S., “Modeling the Effects of Split Injection Scheme on Soot and NOx Emissions of Direct Injection Diesel Engines by a Phenomenological Combustion Model”, SAE Paper, No. 962062, (1996).

2. Tow, T.C. and Piperpont, D.A., “Reducing Particulate and NOx Emissions by using Multiple Injections in a Heavy duty DI Diesel Engine”, SAE Paper,No. 950897, (1995).

3. Bakenhus, M.D. and Reitz, R., “Two-Color Combustion Visualization of Single and Split Injections in a Single-Cylinder Heavy-Duty D.I. Diesel Engine using an Endoscope-Based Imaging System”, SAE Paper, No. 1999-01-1112, (1999).

4. Patterson, M.A., Kong, S., Hampson, G.J. and Reitz, R.D., “Modeling the Effects of Fuel Injection Characteristics on Diesel Engine Soot and NOx Emissions”, SAE Paper, No. 940523, (1994).

5. Bianchi, G.M., Peloni, P., Corcione, F.E. and Lupino, F., “Numerical Analysis of Passenger Car HSDI Diesel Engines with the 2nd Generation of Common Rail Injection Systems: The Effect of Multiple Injections on Emissions”, SAE Paper,No. 2001-01-1068, (2001).

6. Tatschi, R., Gabrief, H.P. and Priesching, P., “Fire-a Generic CFD Platform for DI Diesel Engine Mixture Formation and Combustion Simulation”, User’s Group Meeting at the SAE Congress, Detroit, M.I., (March 4, 2001).

7. Shayler, P.j. and Ng, H.K., “Simulation Studies of the Effect of Fuel Injection Pattern on NOx and Soot Formation in Diesel Engines”, SAE Paper, No. 2004-01-0116, (2004).

8. Chryssakis, C.A., Assanis, D.N., Kook, S. and Bae, C., “Effect of Multiple Injections on Fuel-Air Mixing and Soot Formation in Diesel Combustion using Direct Flame Visualization and CFD Techniques”, Spring Technical Conference, ASME, No. ICES2005-1016, Chicago, I.L., U.S.A., (April 5-7, 2005).

9. Pirouzpanah, V. and Kashani, B.O., “Prediction of Major Pollutants Emission in Direct-Injection Dual-Fuel Diesel and Natural Gas Engines”, SAE Paper, No. 1999-01-0841, (1999).

10. FIRE Engine Simulation Environment user Manual, V. 8.5, (2006).

11. AVL FIRE user Manual, V. 8.5, (2006).

12. Payri, F., Benajes, J., Margot, X. and Gil, A., “CFD Modeling of the in-Cylinder Flow in Direct-Injection Diesel Engines”, Computers and Fluids, Vol. 33, (2004), 995-1021.

13. Liu, A.B. and Reitz, R.D., “Modeling the Effects of Drop Drag and Break-up on Fuel Sprays”, SAE Paper, No. 930072, (1993).

14. Dukowicz, J.K., “Quasi-Steady Droplet Change in the Presence Of Convection”, Informal Report Los Alamos Scientific Laboratory, LA7997-MS.

15. Naber, J.D. and Reitz, R.D., “Modeling Engine Spray/Wall Impingement”, SAE Paper, No. 880107, (1988).

16. Halstead, M., Kirsch, L. and Quinn, C., “The Auto Ignition of Hydrocarbon Fueled at High Temperatures and Pressures-Fitting of a Mathematical Model”, Combustion Flame, Vol. 30, (1977), 45-60.

17. Khoshbakhti Saray, R., “Enhancement of Combustion Process in Dual Fuel Engines at Part Loads by using Suitable Techniques”, IJE, Transactions B, Vol. 22, No. 1, (2009), 77-90.






International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir