Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 22, No. 4 (November 2009) 405-416   

downloaded Downloaded: 319   viewed Viewed: 2223

  EXACT ELASTICITY SOLUTIONS FOR THICK-WALLED FG SPHERICAL PRESSURE VESSELS WITH LINEARLY AND EXPONENTIALLY VARYING PROPERTIES
 
 
A.R. Saidi*, S.R. Atashipour and E. Jomehzadeh

Department of Mechanical Engineering, Shahid Bahonar University of Kerman
P.O. Box 76175-133, Kerman, Iran
saidi@mail.uk.ac.ir - atashipour@yahoo.com - jomehzadeh@graduate.uk.ac.ir

* Corresponding Author
 
 
( Received: October 07, 2008 – Accepted in Revised Form: February 19, 2009 )
 
 

Abstract    In this paper, exact closed-form solutions for displacement and stress components of thick-walled functionally graded (FG) spherical pressure vessels are presented. To this aim, linear variation of properties, as an important case of the known power-law function model is used to describe the FG material distribution in thickness direction. Unlike the pervious studies, the vessels can have arbitrary inner to outer stiffness ratio without changing the function variation of FGM. After that, a closed-form solution is presented for displacement and stress components based on exponential model for variation of properties in radial direction. The accuracy of the present analyses is verified with known results. Finally, the effects of non-homogeneity and different values of inner to outer stiffness ratios on the displacement and stress distribution are discussed in detail. It can be seen that for FG vessels subjected to internal pressure, the variation of radial stress in radial direction becomes linear as the inner stiffness becomes five times higher than outer one. When the inner stiffness is half of the outer one, the distribution of the circumferential stress becomes uniform. For the case in which the external pressure is applied, as the inner to outer shear modulus becomes lower than 1/5, the value of the maximum radial stress is higher than external pressure.

 

Keywords    Thick-Walled Pressure Vessels, Functionally Graded Materials, Linearly-Varying Properties, Exponentially-Varying Properties

 

چکیده    در اين مقاله، براي جابجايي و ميدان تنش مخازن جدار ضخيم كروي ساخته شده از مواد هدفمند پاسخ بسته عرضه شده است. بدين منظور، تغييرات خطي خواص، به عنوان مهم ترين حالت خاص از مدل معروف تابع تواني، برای تشريح توزيع مواد سازنده در راستاي ضخامت استفاده شده است. در اين مطالعه بر خلاف مطالعات مشابه، بدون محدوديت تغيير حالت خطي توزيع مواد، نسبت سفتي سطح داخل مخزن به سطح خارج مي تواند مقادير متفاوتي داشته باشد. سپس، برپاية مدل تابع نمايي تغييرات خواص در راستاي شعاعي، براي مؤلفه هاي ميدان تنش و جابجايي پاسخ بسته عرضه شده و صحت تحليل ها با نتايج موجود بررسي شده است. در پايان، تِأثيرات ناهمگني و مقادير مختلف نسبت سفتي سطوح مخزن بر توزيع تنش و جابه جايي بررسي شده است. نتایج نشان داد كه در مخازن FG كروي تحت فشار داخلي، هرگاه نسبت سفتي سطح داخلي به سطح خارجي حدوداً برابر 5 باشد، توزيع تنش شعاعي در راستاي شعاعي تقريباً خطي است. هنگامي كه سفتي سطح داخلی تقريباً نصف سفتي سطح خارج باشد، توزيع تنش حلقوي يكنواخت است. براي حالتي كه تنها فشار خارجي وجود داشته باشد، هرگاه نسبت مدول برشي سطح داخل به سطح خارج كمتر از 5/1 باشد، مقدار بیشترین تنش شعاعي در داخل جدارة مخزن، بيشتر از مقدار فشار خارجي خواهد بود.

References   

1. Koizumi, M., “The Concept of FGM”, Ceramic Trans, Vol. 34, (1993), 3-10.

2. Koizumi, M., “FGM Activities in Japan”, Composites Part B, Vol. 28, (1997), 1-4.

3. Watari, F., Yokoyama, A., Saso, F. and Kawasaki, T., “Fabrication and Properties of Functionally Graded Dental Implant”, Composites Part B, Vol. 28, (1997), 5-11.

4. Pompe, W., Worch, H., Epple, M., Friess, W., Gelinsky, M., Greil, P., Hempel, U., Scharnweber, D. and Schulte, K., “Functionally Graded Materials for Biomedical Applications”, Material Science and Engineering A, Vol. 362, (2003), 40-60.

5. Muller, E., Drasar, C., Schilz, J. and Kaysser, W.A., “Functionally Graded Materials for Sensor and Energy Applications”, Material Science and Engineering A, Vol. 362, (2003), 17-39.

6. Suresh, S. and Mortensen, A., “Fundamentals of Functionally Graded Materials”, Maney, London, U.K., (1998).

7. Schulz, U., Peters, M., Bach, F.W. and Tegeder, G., “Graded Coatings for Thermal, Wear and Corrosion Barriers”, Material Science and Engineering A, Vol. 362, (2003), 61-80.

8. Erdogan, F., “Fracture Mechanics of Functionally Graded Materials”, Composites Engineering, Vol. 5, No.7, (1995), 753-770.

9. Fukui, Y. and Yamanaka, N., “Elastic Analysis for Thick-Walled Tubes of Functionally Graded Materials”, JSME Int. J., Ser. I: Solid. Mech., Strength Mater, Vol. 35, No. 4, (1992), 379-385.

10. Loy, C.T., Lam, K.Y. and Reddy, J.N., “Vibration of Functionally Graded Cylindrical Shells”, International Journal of Mechanical Science, Vol. 41, No. 3, (1999), 309-324.

11. Salzar, R.S., “Functionally Grade Metal Matrix Composite Tubes”, Composites Engineering, Vol. 5, No.7, (1995), 891-900.

12. You, L.H., Zhang, J.J. and You, X.Y., “Elastic Analysis of Internally Pressurized Thick-Walled Spherical Pressure Vessels of Functionally Graded Materials”, International Journal of Pressure Vessels and Piping, Vol. 82, (2005), 347-354.

13. Tutuncu, N., “Stresses in Thick-Walled FGM Cylinders with Exponentially-Varying Properties”, Engineering Structures, Vol. 29, (2007), 2032-2035.

14. Erdogan, F., “The Crack Problem for a Bonded Nonhomogeneous Material under Antiplane Shear Loading”, Journal of Applied Mechanics, Vol. 52, No. 4, (1985), 823-825.

15. Delale, F. and Erdogan, F., “Interface Crack in a Nonhomogeneous Elastic Medium”, International Journal of Engineering Science, Vol. 26, No. 6, (1988), 559-568.

16. Ozturk, M. and Erdogan, F., “Axisymmetric Crack Problem in Bonded Materials with a Graded Interfacial Region”, International Journal of Solids and Structures, Vol. 33, No. 2, (1996), 193-219.

17. Jin, Z.H. and Batra, R.C., “Interface Cracking Between Functionally Graded Coatings and a Substrate under Antiplane Shear”, International Journal of Engineering Science, Vol. 34(15), (1996), 1705-1716.

18. Gu, P. and Asaro, R.J., “Cracks in functionally graded materials”, International Journal of Solids and Structures, Vol. 34, No. 1, (1997), 1-17.

19. Sankar, B.V., “An Elasticity Solution for Functionally Graded Beams”, Composites Science and Technology, Vol. 61, No. 5, (2001), 689-696.

20. Bao, G. and Wang, L., “Multiple Cracking in Functionally Graded Ceramic/Metal Coatings”, International Journal of Solids and Structures, Vol. 32, (1995), 2853-2871.

21. Praveen, G.N. and Reddy, J.N., “Nonlinear Transient Thermoelastic Analysis of Functionally Graded Ceramic-Metal Plates”, International Journal of Solid and Structures, Vol. 35, (1998), 4457-4476.

22. Javaheri, R. and Eslami, M.R., “Buckling of Functionally Graded Plates under in-Plane Compressive Loading”, ZAMM, Vol. 82, No. 4, (2002), 277-283.

23. Vel S.S. and Batra R.C., “Three-Dimensional Exact Solution for the Vibration of Functionally Graded Rectangular Plates”, Journal of Sound and Vibration, Vol. 272, (2004), 703–730.

24. Cheng, Z.Q. and Batra, R.C., “Three-Dimensional Thermoelastic Deformations of a Functionally Graded Elliptic Plate”, Composites Part B, Vol. 31, No. 1, (2000), 97-106.

25. Woo, J. and Meguid, S.A., “Nonlinear Analysis of Functionally Graded Plates and Shallow Shells”, International Journal of Solids and Structures, Vol. 38, No. 42, (2001), 7409-7421.

26. Hongjun, X., Zhifei, S. and Taotao, Z., “Elastic Analyses of Heterogeneous Hollow Cylinders”, Mechanics Research Communications, Vol. 33, (2006), 681-691.

27. Zhifei S., Taotao, Z. and Hongjun, X., “Exact Solutions of Heterogeneous Elastic Hollow Cylinders”, Composite Structures, Vol. 79, (2007), 140-147.

28. Tutuncu, N. and Ozturk, M., “Exact Solutions for Stresses in Functionally Graded Pressure Vessels”, Composits: Part B, Vol. 32, (2001), 683-686.

29. Eslami, M.R., Babaei, M.H. and Poultangari, R., “Thermal and Mechanical Stresses in a Functionally Graded Thick Sphere”, International Journal of Pressure Vessels and Piping, Vol. 82, (2005), 522-527.

30. Spiegel, M.R., “Mathematical Handbook of Formulas and Tables”, 2nd ed., McGraw-Hill, U.S.A., (1998).

31. George, E.A., Richard, A. and Ranjan, R., “Special Functions”, Cambridge University Press, U.K., (2000).

32. Lai, W.M., Rubin, D. and Krempl, E., “Introduction to Continuum Mechanics”, 3rd ed., Pergamon Press, U.S.A., (1999).






International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir