Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 23, No. 2 (April 2010) 177-190   

downloaded Downloaded: 131   viewed Viewed: 1832

  OPTIMIZATION OF HEAT TRANSFER ENHANCEMENT OF A FLAT PLATE BASED ON PARETO GENETIC ALGORITHM
 
M. Kahrom, P. Haghparast and S. M. Javadi
 
( Received: October 02, 2009 – Accepted in Revised Form: May 20, 2010 )
 
 

Abstract    A quad inserted into a turbulent boundary layer of a flat plate and its effect on average heat transfer and the friction coefficient is studied. To optimize this effect, the edge sizes and distance of the quad from the flat plate are continually modified. In each case, simultaneously the heat transfer enhancement and reduction in skin friction are analyzed. For optimization, the genetic algorithm technique is employed and the results of each step of progress studied by following the Pareto curves. Physical domain is divided into control volumes, over which flow equations are discretized. To deal with the turbulence, several turbulence schemes are examined and appearance of flow features and stability in hard environments are monitored. The RNG k - ε turbulence model proved to give reliable solutions and stability to all the 1,600 cases under consideration. Based on the Pareto curve and with no single exceptions of the cases studied, results show that as the heat transfer coefficient rises, the skin friction falls simultaneously; in other words, there is an inverse relation between heat transfer enhancement and skin friction. Conclusion also made that the rate of heat transfer enhancement is more sensitive to modification on small area quads than those of large ones. Since the experimental validation of too many cases was impractical, random comparison between some numerical results and wind tunnel experiments is performed. The comparison showed that the numerical results are strongly in agreement with the experiments.

 

Keywords    Genetic Algorithm, Pareto Front, Heat Transfer Enhancement, Reynolds Analogy

 

چکیده    اثر ورود يك چهار گوش به داخل لايه مرزي توربولنت بر روي يك صفحه تخت بر افزايش ضريب انتقال حرارت بررسي مي شود. براي بهينه كردن ضريب انتقال حرارت، اندازه اضلاع چهارگوش و فاصله آن از سطح صفحه گرم مجاور آن، به دفعات تغيير داده شده و در هر حالت تغيير ضريب انتقال حرارت و ضريب اصطكاك تحليل شده است. براي بهينه كردن از روش الگوريتم ژنتيك استفاده مي شود كه در آن نتيجه هر مقايسه بر روي منحني هاي پَرِتو دنبال مي شود. ابتدا فضاي فيزيكي به حجم هاي كنترلي تقسيم و معادلات جريان بر روي اين حجم ها تفاضلي شده و مدل هاي مختلف توربولنسي مورد آزمون و انتخاب قرار گرفته است. ملاحظه شده است كه مدل RNG k - ε پاسخ هاي بهتري در 1600 مورد مطالعه به دست مي دهد. بر اساس منحني هاي پَرِتو و بدون استثنا ديده مي شود كه اولاً افزايش ضريب انتقال حرارت متوسط همواره با كاهش ضريب اصطكاك همراه است. يعني تغييرات اين دو مشخصه با يكديگر نسبت وارونه دارند. ثانياً افزايش ضريب انتقال حرارت براي سطح مقطع هاي كوچك چهار گوش حساس تر به تغيير اندازه مساحت بوده است. براي صحت سنجي نتايج عددي، گزينش تصادفي از حل هاي عددي انجام و با نتايج آزمايشگاهي مقايسه شده است. مقايسه انطباق خوبي را با نتايج آزمايشگاهي نشان مي دهند.

References   

1. Perry L. Y., “Surface roughness effects on heat transfer in micro scale single phase”, Proceedings of the Sixth International ASME Conference on Nano channels, Micro channels and Mini channels, Darmstadt, Germany, June 23-25, (2008)

2. Suzue Y., Morimoto K., Shikazono N., Suzuki Y. and Kasagi N., “High performance heat exchanger with oblique wavy walls”, 13th international Heat Transfer Conference, Sydney, Australia,13-18 August (2006)

3. Liting Tian, Yaling He, Yubing Tao, Wenquan Tao, A comparative study on the air-side performance of wavy fin-and-tube heat exchanger with punched delta winglets in staggered and in-line arrangements, International Journal of Thermal Sciences Vol. 48, (2009), 1765–1776.

4. Rathod M.K., Shah Niyati K., PrabhakaranP., Performance evaluation of flat finned tube fin heat exchanger with different fin surfaces”,Applied Thermal Engineering Vol. 27, (2007), 2131–2137.

5. Kahrom M., Farievar S., Haidarie A., “The effect of square splittered and unsplittered rods in flat plate heat transfer enhancement”, International Journal of Engineering, Vol 20, No. 1, (2007), 83-94,

6. Inaoka J., Yamamoto J., Suzuki K., “Dissimilarity between heat transfer and momentum transfer in a disturbed boundary layer with insertion of a rod-modeling and numerical simulation”, International Journal of Heat and Fluid Flow, Vol. 20, (1999), 290-301.

7. Teraguchi K., Katoh K., Azuma T., “Dissimilarity between turbulent momentum and heat transfer by excitation of transverse vortex”, Journal of The Japan Society of Mechanical Engineers, Vol. 80, (2005)

8. Kong H., Choi H., Lee J. S., “Dissimilarity between the velocity and temperature fields in a perturbed turbulent thermal boundary layer”, Phys. Of Fluids, Volume 13, No. 5, (2001), 1466.

9. Gosselin L., Gingras M.T., Potvin F.M., “Review of utilization of genetic algorithms in heat transfer problems”,International Journal of Heat and Mass Transfer, Vol. 52, (2009), 2169–2188.

10. MacCormack W., Tutty O.R., Rogers E., Nelson P.A., “Stochastic optimization based control of boundary layer transition”, Control Engineering Practice, Vol. 10, No. 3, (200), pp. 243-260.

11. Leng G.S.B., Ng T.T.H., “Application of genetic algorithms to conceptual design of amicro-air vehicle”, Engineering Applications of Artificial Intelligence, Vol. 15, (2002), 439–445.

12. Tiwari S., Chakraborty D., Biswas G., Panigrahi P.K., “Numerical prediction of flow and heat transfer in a channel in the presence of a built-in circular tube with and without an integral wake splitter”, International Journal of Heat and Mass Transfer, Vol. 48, (2005), 439–453.

13. Amanifard A., Nariman-Zadeh N., Borji M., Khlkhali A., A. Habibdoust, “Modeling and Pareto optimization of heat transfer and flow coefficients in micro channels using GMDH type neutral networks and genetic algorithms”, Journal of Energy Conversion and Management, Vol. 49, No. 2, (2008), 311-325.

14. Xie G.N., Sunden B., Wang Q.W., “Optimization of compact heat exchangers by a genetic algorithm”, Applied Thermal Engineering, Vol. 28, (2008), 895–906.

15. Gholap A.K., Khan J.A., “Design and multi-objective optimization of heat exchangers for refrigerators”, Journal ofApplied Energy, Vol. 84, (2007), 1226–1239.

16. Hilbert R., Jaiga G., Barn R., Thevenin D., “Multi-objective shape optimization of a heat exchanger using parallel genetic algorithms”, Int. J. of Heat and Mass Transfer, Vol. 49, (2006), 2567-2577.

17. Bagley, J.D "The behavior of adaptive systems which employ genetic and correlation algorithms", Dissertation Abstracts International, University of Michigan, Vol. 28 No.12, (1967).

18. Holland J.H., “Adaptation in Natural and Artificial Systems”, MIT Press ed., ISBN-13: 9780262581110, (1992).

19. De Jong, K., “Using genetic algorithms to search program spaces”, Proceedings of the Second International Conference on Genetic Algorithms, pp. 210–216. Cambridge, MA:Lawrence Erlbaum. (1987)

20. Goldberg D.E., “Genetic algorithms in search, optimization and machine learning”, Addison-Wesley, Reading, (1989).

21. Davidson L., “An Introduction to turbulence models”, Publication 97/2, Department of Thermo and Fluid Dynamics, Chalmers University of Technology, (2003).

22. Gatski T.B., Hussaini M.Y., Lumley J.L., “Simulation and modeling of turbulent flows”, ICASE/LaRc series in Computational Science and Engineering, ISBN 0-19-510643-1 Oxford University Press, (1996).

23. Kahrom M., Khoshnewis A.B., Bani Hashemi H., “Hot Wire Anemometry in the Wake of Trapezoidals in the Vicinity of a Falt Plate”, Report No. 40258, Faculty of Engineering, Ferdowsi University of Mashhad, Jan. (2009).





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir