IJE TRANSACTIONS B: Applications Vol. 24, No. 2 (July 2011) 107-118   

downloaded Downloaded: 254   viewed Viewed: 1970


Y. Kebbati*

Universiy of Orléans, OSUC Observatoire des Sciences de l’Univers en Région Centre

Campus Géosciences 1 A rue de la Férolerie 45071 ORLEANS CEDEX (France)



*Corresponding Author

( Received: November 12, 2009 – Accepted in Revised Form: April 23, 2011 )

Abstract    VLSI circuits design allows today to consider new modes of implementation for electrical controls. However, design techniques require an adaptation effort that few designers, too accustomed to the software approach, provide. The authors of this article propose to develop a methodology to guide the electrical designers towards optimal performances of control algorithms implementation. Thus, they were based on two concepts: modular design and algorithm architecture adequation. An exemple of DTC control implemented in an ASIC circuit is presented and the results of the integration performances valide our methodology.


Keywords    ASIC, FPGA, Electrical System Control, Modular Design, Algorithm Architecture Adequation, Direct Torque Control.


چکیده    امروزه، طراحي مدارهاي VLSI حالتي جديد براي راه اندازي کنترل هاي الکتريکي است. به هر حال، روش هاي طراحي به تلاشي تطابقي نياز دارد که تعدادي از طراحان خوگرفته به روش هاي نرم افزاري، آن را ايجاد مي کنند. نويسندگان اين مقاله، توسعه روشي را براي هدايت طراحان الکتريکي به سمت عملکردهاي انتخابي براي راه اندازي الگوريتم هاي کنترلي پيشنهاد مي کنند. بنابراين، آنها بر پايه دو مفهوم هستند: طراحي مدولار و معماري الگوريتم. تمام نمونه هاي راه اندازي کنترل DTC در مدار ASIC نمايش داده شده است و نتايج عملکردهاي يکپارچه، روش ما را معتبر ساخته است


1. Cecati, C., “Microprocessors for Power Electronics and Electrical Drives Applications”, Newsletter, IES Industrial Electronics, Vol. 46, No. 3, (1999).

2. Le-Huy, H., “Microprocessors and Digital IC’s for Motion Control”, proceedings of the IEEE, Vol. 82, (1994), 1140-1163.

3. Tzou, Y.Y. and Jyang, J.Y., “A programmable current vector control IC for AC motor drives”, The International Conference on Industrial Electronics, Control and Instrumentation (IEEE IECON’99), San Jose, USA, (1999), 216-221.

4. Riesgo, T., Torroja, Y. and Dela Torre, E., “Design Methodologies Based on Hardware Description Languages”, IEEE Transactions on Industrial Electronics, Vol. 46, (1999), 3-12.

5. De Doncher, R. and Novotny, D.W., “The universal field oriented controller”, The Industry Applications Society conference (IEEE IAS’88), (1988), 450-456.

6. Jerraya, A.A., Ding, H., Kission, P. and Rahmouni, M., “Behavioral synthesis and component reuse with VHDL” ,Kluwer Academic Publishers, (1997).

7. Trimberger, T., Rowson, J.A., Lang, C.R. and Gray, J.p., “A structured design methodology and associated software tools”, The IECS conference (IECS’1981), Vol. 28, No. 7, (1981).

8. Lavarenne C., et Sorel Y.,  Modèle Unifié pour la Conception Conjointe Logiciel-Matériel », Revue Traitement du Signal, Vol. 14, No. 6, (1997), 569-578.

9. Kebbati, Y., “Développement d’une méthodologie de conception matériel à base de modules génériques VHDL-VHDL-AMS en vue d’une intégration de systèmes de commande électriques”,Phd Thesis, Strasbourg, France, (2002).

10. Souffi, H., “Conception d’opérateurs numériques réutilisables: application à une méthodologie d’implantation rapide et optimale d’algorithmes de commandes”. Phd Thesis, Strasbourg, France, (2002).

11. Takahashi, I. and Noguchi, T., “A new quick response and high efficiency control strategy of an induction motor” The Industry Applications Society conference (IEEE IAS'1985), (1985), 495-502.

12. Chapuis, Y.A., Girerd, C., Aubepart, F., Blonde, J.P., et Braun F., “Quantization Problem Analyze on ASIC-Based Direct Torque Control of an Induction Machine”, Actes de IEEE Industrial Electronics, Control and Instrumentation (IECON), Aachen, Germany, (1998), 1527-1532.

13. Kebbati, Y., Girerd, C., Chapuis, Y.A., et Braun F., “Advances in FPGA/ASIC Digital Integration Solutions for Vectors Control of Motor Drive”, Actes de IEE International Power Electronics and Converter Conference (IPEC), (2000), 1177-1182.


14. Kebbati, Y., Girerd, C., Chapuis, Y.A., et Braun F., “Advances in FPGA/ASIC digital integration solutions for vector control of motor drive” The International Power Electronics and Converter conference (IEEE IPEC'2000), Tokyo, Japan, (2000), 1177-1182.

15. Girerd C., Aubépart F., Poure P., Blondé J.P., Chapuis Y.A., et Braun F., « Modélisation VHDL/Spectre HDL et Simulation Mixte sous Cadence : Conception d’un ASIC de Commande de Moteur Asynchrone », Actes des Journées Thématiques sur l’Adéquation Algorithme Architecture du GDR ISIS, (1999).

16. Casadei D., Grandi G., Serra G., et Tani A., « Effects of Flux and Torque of Induction Machines Based on Stator Flux Vector Control », Actes de IEEE Industrial Electronics, Control and Instrumentation (IECON), Bologna, Italia, (1994), 299-304.

17. Kang, J.K. and Sul, S.K., “New Direct Torque Control of Induction Motor for Minimum Torque Ripple and Constant Switching Frequency”, IEEE Transactions on Industrial Applications, Vol. 35, (1999), 1076-1082.

18. Martin, C.A., Roboam, X., Meynard, T.A. and Carvalho, A.S., “Multi-level Direct Torque Control with imposed switching frequency and reduced ripples”, IEEE Power Electronics Specialists Confrence (IEEE PESC’2000), Galway, Ireland, (2000).

19. Vaez-Zadeh, S. and Mazarei, G.H. On Line Determination of Optimal Hysteresis Band Amplitudes in Direct Torque Control of Induction Motor DrivesInternational Journal of Engineering, Transactions A: BasicsVol. 15, No. 4, (2002),  329-338. 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir