Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 24, No. 2 (July 2011) 119-126   

downloaded Downloaded: 128   viewed Viewed: 2074

  EFFECT OF COLLOIDAL PARTICLES ASSOCIATED WITH THE LIQUID BRIDGE IN STICKING DURING DRYING IN SUPERHEATED STEAM
 

I. Hamawand*

Department of Chemical Engineering, Koya University, Koya 47015, Erbil, Iraq

ihsanbaker@yahoo.com

*Corresponding Author

 
( Received: October 11, 2010 – Accepted in Revised Form: April 23, 2011 )
 
 

Abstract    It is very important in the design of a drying system is to evaluate sticking behaviour of the materials goes under drying. A new approach to the sticking issue is applied in this study by carrying out a sticking test for the liquid associated with the materials under study. It was found that the liquid bridge is responsible of the initial sticking of the materials to the contact surface and the colloidal material in this liquid is eventually responsible of building a sticky solid bridge during drying. The glass transition temperature for the Brewers Spent Grain (BSG) particles and the colloidal solution that expelled from these particles is tested using Differential Scanning Calorimetric (DSC). However that the chopped BSG particles showed no glass transition temperature there was a marked amount of it that sticked to the rotary drum dryer and the sample holders during drying. The sticking behaviour may be regarded to the colloidal particles in the liquid associated with the grain. The colloidal particles in this liquid is filtered and concentrated through evaporation and then tested by the (DSC) where it showed a glass transition temperature at (-23) and (-33) C. In addition, the associated liquid has a honey shape and a sticky touch when concentrated. These two properties are an indication that this colloidal material may be responsible of sticking the BSG to the steel surfaces during drying.

 

Keywords    colloidal particles, sticking, liquid bridge, rotary drum, superheated steam drying.

 

چکیده    چكيده در طراحي يك سيستم خشك كن، ارزيابي رفتار چسبندگي موادي كه خشك مي شوند پارامتر مهمي است . در اين مطالعه با انجام تست چسبندگي براي مايع مربوط با مواد مورد بررسي، راهكار نويني در ارتباط با اين موضوع به كار گرفته شده است . بررسي ها نشان داده است كه پل مايع، عامل چسبندگي اوليه مواد به سطح تماس بوده و همچنين ماده كلوئيدي موجود در اين مايع عامل ايجاد يك پل جامد چسبنده در طي فرآيند خشك كردن مي باشد. دماي گذار شيشه اي براي ذرات دانه اي مورد استفاده در آبجو سازي(BSG) و محلول كلوئيدي حاصل از آن با استفاده از آزمايش هاي اختلاف كالريمتري (DSC) مورد بررسي قرار گرفته است. اگر چه ذرات خرد شده(BSG) دماي گذار شيشه اي را نشان نداده اند اما تعداد قابل ملاحظه اي از آن ها به خشك كن دوار و نگه دارنده هاي نمونه در حين خشك كردن چسبيدند. ذرات كلوئيدي در پل مايع فيلتر و با استفاده از روش تبخير تغليظ شد. همچنين با بهره گيري از آناليز (DSD) دماي گذار شيشه اي در دماهاي oC 23- و 33- نشان داده شده است. علاوه بر آن مايع آماده شده با روش بالا قوام و چسبندگي در حين تغليظ از خود نشان داد. اين دو پارامترمويد اين مطلب بوده كه مواد كلوئيدي عامل اصلي چسبندگي ذرات BSG به سطوح استيل در حين خشك كردن مي باشند

References   

1. Bhandari B., and Howes T., “Relating the stickiness property of food undergoing drying and dried products to their surface energy”, Drying Technology, Vol. 23,(2005), 781-797.

2. Adhikari B., Howes T., Bhandari B. R., andTruong V., “Stickiness in foods: A review of mechanisms and test methods”, International Journal of Food Properties,Vol. 4, No. 1, (2001), pp. 1-33.

3. Mazzone D. N., Tardos G. I., and Pfeffer R., “The behaviour of liquid bridges between two relatively moving particles”, Powder Technology, Vol. 51, (1987), pp.71-83.

4. Mu Fusheng, and Su Xubin, “Analysis of liquid bridge between spherical particles”, China Particuology, Vol. 5 , (2007), pp. 420-424.

5. Boonyai P., Bhandari B., and Howes T., “Stickiness measurement for food powder: a review”, Powder Technology, Vol. 145, (2004), pp. 34-46.

6. Pakarinen O. H., Foster A. S., Paajanen M., Kalinainen T., Katainen J., Makkonen I., Lahtinen J., and Nieminen R. M., “ Towards an accurate description of the capillary
force in nonoparticle-surface interactions”, Modelling simul. Mater. Sci. Eng., Vol. 13, (2005), pp. 1175-1186.

7. Nosonovsky M., and Bhushan B., “Phase behaviour of capillary bridges: towards nanoscale water phase diagram”, Phys. Chem. Chem. Phys., (2008), Vol. 10, pp. 2137-2144.

8. Mori Yasushige, “effect of surface hydrophobisity on interaction between particle and flat plate at final stage of wet coating process”, Colloids and Surfaces A: Physicochem. Eng. Aspects, Vol. 311, (2007), pp. 61-66.

9. Ozmen L., and Langrish T.A.G., “Comparison of glass transition temperature and sticky point temperature for skim milk powder”, Drying Technology, Vol. 20, No. 6, (2002), pp. 1177-1192.

10. Goula A. M., Karapantsios T. D., Achilias D. S., and Adamopoulos K. G., “Water sorption isotherms and glass transition temperature of spray dried tomoto pulp”, Journal of Food Engineering, Vol. 85, (2008), pp. 73-83.

11. Adhikari B., Howes T., Bhandari B., and Truong V., “Characterization of the surface stickiness of fructosemaltodextrin solutions during drying”, Drying Technology, Vol. 21, No. 1, (2003a), pp. 17-34.

12. Adhikari B., Howes T., Bhandari B., and Truong V., “In situ Characterization of stickiness of sugar-rich foods using a linear actuator driven stickiness testing device”, Journal of Food Engineering, Vol. 58, (2003b), pp. 11-22.

13. Adhikari B., Howes T., Bhandari B. R., and Truong V., “Surface stickiness of drops of carbohydrate and organic acid during convective drying: experiments and modeling”, Drying Technology, Vol. 21, No. 5, (2003c),pp. 839-873.

14. Adhikari B., Howes T., and Bhandari B.,“Use of solute fixed coordinate system and method of lines for prediction of drying kinetics and surface stickiness of single droplet during convective”, Chemical Engineering and Processing, Vol. 46, (2007), pp. 405-419.

15. Bhandari B. R., and Howes T., “Implication of glass transition for drying and stability of dried food”, Journal of Food Engineering, Vol. 40, (1999), pp. 71-79.

16. Kudra Tadeusz, “ Sticky region in drying-definition and identification”, Drying Technology, Vol. 21, No. 8,(2003), pp. 1457-1469.

17. Chen X.D., Rennie P.R., and Mackereth A.R., “Combined influences of humidity band temperature upon the interparticle stickiness of a whole milk powder”, International Journal of Food Properties, Vol. 7, No. 3, (2004), pp. 499-509.

18. Dowton G.E., Flores-Lona J., and King C. J., “Mechanism of stickiness in hygroscopic, amorphous powder”, Ind. Eng. Chem. Fundam., Vol. 21, (1982), pp. 447-451.

19. Jaya S., and Das H., “Glass transition and sticky point temperatures and stability/mobility diagram of fruit powders”, Food Bioprocess Technology, Vol. 2, No. 1,
(2009), pp. 89-95.

20. Lockemann C. A., “ A new labrotary method to charecterize the sticking property of free flowing solid”, Chemical Engineering and Processing, Vol. 38,(1999), pp. 301-306.

21. Hennings H., Kockel T. K., and Langrish T A., “New measurements of the sticky behaviour of skim milk powder”, Drying technology, Vol. 19, No. 3&4, (2001), pp. 471-484.

22. Ozkan N., Walisinghe N., Chen X. D., “Characterization of stickiness and cake formation in whole skim milk powders”, Journal of Food Engineering, Vol. 55, (2002), pp. 293-303.

23. Foster K. D., Bronlund J. M., and Paterson A. H., “Glass transition related cohesion of amorphous sugar powders”, Journal of Food Engineering, Vol. 77, (2006), pp. 997-1006.

24. Paterson A.H., Zuo J.Y., Bronlund J. E., and Rajesh Chatterjee, “ Stickiness curve of high fat diary powders using the particle gun”, International Diary Journal, Vol. 17, (2007), pp. 998-1005.

25. Werner R.L., Jones J.R., and Paterson H.J., “Stickiness during drying of amorphous skin-forming solution using a probe tack test”, Journal of Food Engineering, Vol. 81, (2007b), pp. 647-656.

26. Adhikari B., Howes T., Lecomte D., and Bhandari B. R., “ A glass transition temperature approach for the prediction of surface stickiness of a drying droplet during spray drying”, Powder Technology, Vol. 149, (2005), pp. 168-179.

27. Ozmen L., and Langrish T.A.G., “An experimental investigation of the wall deposition of milk powder in a pilot-scale spray dryer”, Drying Technology, Vol. 21, No. 7, (2003), pp. 1253-1272.

28. Werner R.L., Jones J.R., and Paterson H.J., “Stickiness of maltodextrins using probe tack test during in situ drying ”, Journal of Food Engineering, Vol. 80, (2007a), pp. 859-868.

29. Kendall Kevin, “Molecular adhesion and its applications, the sticky universe”, 2001, Kluwer Academic / Plenum Publishers, New York.

30. Chen X. D., and Ozkan N., “Stickiness functionality, and microstructure of food powder”, Drying Technology, Vol. 25, (2007), pp. 969-979.

31. Tag Z., Cenkowski S., and Izydorczyk M., “Thin-layer drying of spent grain in superheated steam”, Journal of Food Engineering, Vol. 67, (2005), pp. 457-465.

32. Mussatto S.I., Dragone G., and Roberto I.C., “Brewers’ spent grain: generation, characteristics and potential applications”, Journal of Cereal Science, Vol. 43, (2006), pp. 1-14.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir