IJE TRANSACTIONS B: Applications Vol. 24, No. 2 (July 2011) 165-179   

downloaded Downloaded: 157   viewed Viewed: 1993



H. Khatamnezhad, S. Khalilarya *,S. Jafarmadar, H. Oryani



Department of Mechanical Engineering, University of Urmia, Postal Code 51723-44115, Iran




M. Pourfallah


Department of Mechanical Engineering, Babol University of Technology, Postal Code 46169-44484,  Iran




*Corresponding Author

( Received: October 15, 2010 – Accepted in Revised Form: April 23, 2011 )

Abstract    One promising way to achieve low temperature combustion regime is the use of a large amount of cooled EGR. In this paper, the effect of injection timing on low temperature combustion process and emissions were investigated via three dimensional computational fluid dynamics (CFD) procedures in a DI diesel engine using high EGR rates. The results show when increasing EGR from low levels to levels corresponding to reduced temperature combustion, soot emission after first increasing, is decreased beyond 40% EGR and get the lowest value at 58% EGR rate. Soot and NOx emissions are simultaneously decreased at advanced injection timing before 20.5 ºCA BTDC in conjunction with 58% cooled EGR rate in compared to baseline case.


Keywords    Diesel Engine, Low Temperature Combustion High EGR Rates, Combustion, Emissions


چکیده    يكي از راهكارهاي بدست آمدن يك احتراق دما پايين، استفاده از نرخ هاي بالاي بازخوراني گازهاي خروجي سرد شده است. در اين تحقيق با استفاده روش ديناميك سيالات محاسباتي و شبيه سازي سه بعدي، تاثير زمانبندي پاشش سوخت بر روي احتراق دما پايين و آلايندگي يك موتور ديزلي پاشش مستقيم تحت نرخ هاي بالاي بازخوراني گازهاي خروجي سرد شده بررسي شده است. نتايج نشان مي دهند كه با افزايش نرخ هاي بازخوراني گازهاي خروجي تا نرخ هاي حاصل شدن يك احتراق دما پايين، آلاينده دوده پس از يك افزايش اوليه، با افزايش بيشتر از 40% كمتر مي شود و در 58% كمترين ميزان خروجي را نشان مي دهد. آلاينده هاي دوده و اكسيد نيترو‍ژن در زمانبندي هاي به جلوكشيده شده براي پاشش قبل از 20.5 درجه ميل لنگ و همراه با 58% نرخ بازخوراني گازهاي خروجي سرد شده در مقايسه با حالت پايه بطور همزمان كاهش مي يابند.


1. Ryan, T. W., Callahan, T. J. “Homogeneous Charge Compression Ignition of Diesel Fuel.” SAE Paper, NO. 961160 (1996).

2. Dec, J. E. “A computational study of the effects of low fuel loading and EGR on heat release rates and combustion limits in HCCI engines.” SAE Paper. NO. 2002-01-1309 (2002).

3. Hosseini, V. W Stuart Neill, Wally L. Chippior. “Influence of Engine Speed on HCCI Combustion Characteristics using Dual-Stage Autoignition Fuel.” SAE Paper, NO. 2009-01-1107 (2009).

4. Lee, C. S., Lee, K. H., and Kim, D. S. “Experimental and Numerical Study on the Combustion Characteristics of Partially Premixed Charge Compression Ignition Engine With Dual Fuel.” Fuel, NO.82, pp. 553–560 (2003).

5. Kanda, T., Hakozaki, T., Uchimoto, T., Hatano, J., Kitayama, N., and Sono, H. “PCCI Operation with Early Injection of Conventional Diesel Fuel.” SAE Paper, NO. 2005-01-0378 (2005).

6. Sasaki, S., Ito, T. and Iguchi, S., "Smoke-less Rich Combustion by Low Temperature Oxidation in Diesel Engines",

9. Aachen Colloquium Automobile and Engine Technology 2000, 767, (2000).

7. Akihama, K., Takatori, Y., Inagaki, K., Sasaki, S., and Dean, A. M. “Mechanism of the Smokeless Rich Diesel Combustion by Reducing Temperature.” SAE Paper, NO. 2001-01-0655, (2001). 8. Bianchi, G.M., Cazzoli, G., Pelloni, P. and Corcione, F. E., “Numerical Study Towards Smoke-Less and NOx-Less HSDI Diesel Engine Combustion”, SAE Paper, NO. 2002-01-1115, (2002).

9. Alriksson, M. and Denbratt, I., “Low Temperature Combustion in a Heavy Duty Diesel Engine Using High Levels of EGR”, SAE Paper, NO. 2006-01-0075, (2006).

10. Cong, Sh., McTaggart-Cowan, G. and Garner, C., “Effects of Fuel Injection Parameters on Low Temperature Diesel Combustion Stability”, SAE Paper, NO. 2010-01-0611, (2010).

11. Amsden A.A., O’Rourke P.J., Butler T.D. “KIVA ll: a computer program for chemically reactive flows with sprays.” Los Alamos National Laboratory, NO. LA-11560-MS, (1989).

12. Han Z., Reits R.D. “Turbulence modelling of internal combustion engine using RNG k-ε models.” Combustion Science Technology, in press.

13. Beale, J.C., and Reitz, R.D. “Modeling Spray Atomization with the Kelvin-Helmholtz/Rayleigh-Taylor Hybrid Model.” Atomization and Sprays, NO. 9, pp. 623-650, (1999).

14. Dukowicz, J.K. “Quasi-Steady Droplet Phase Change In the Presence of Convection.” Informal Report Los Alamos Scientific Laboratory, LA7997-MS, (1979).

15. Halstead, M., Kirsch, L. and Quinn, C., “The Auto Ignition of Hydrocarbon Fueled at High Temperatures and Pressures-Fitting of a Mathematical Model.” Combustion Flame, NO. 30, pp. 45-60, (1977).

16. Versteeg, Malalasekera, An Introduction to Computational Fluid Dynamics. Mc Grow- Hill Book Company, ISBN 964-454-375-0, 1995.

17. Zeldovich, Y. B., Sadovnikov, P. Y. and Frank Kamenetskii, D. A. “Oxidation of Nitrogen in Combustion.” Translation by M. Shelef, Academy of Sciences of USSR, Institute of Chemical Physics, Moscow-Leningrad, (1947).

18. Kong, S.-C., Sun, Y., and Reitz, R. D. “Modeling Diesel Spray Flame Lift-Off, Sooting Tendency and NOx Emissions Using Detailed Chemistry With Phenomenological Soot Model.” ASME J. Eng. Gas Turbines Power, (2007).

19. Rutland, C. J., Ayoub, N. Z., Han, Z., et al., “Diesel engine model and development and experiments.” SAE Paper, NO. 951200 (1995).

20. Baumgarten, Carsten. Mixture Formation in Internal Combustion Engines. Springer Publications, (2006).

21. Ciajolo, A., d’Anna, A., Barbella, R., Tregrossi, A and Violi, A. “The Effect of Temperature on Soot Inception in Premixed Ethylene Flames.”, Twenty-Sixth Symposium (International) on Combustion, The Combustion Institute, (1996).

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir