IJE TRANSACTIONS B: Applications Vol. 24, No. 2 (July 2011) 181-190   

downloaded Downloaded: 171   viewed Viewed: 2528


D. Darvishi, D. F. Haghshenas, E. Keshavarz Alamdari*


Department of Mining, Metallurgical Engineering, Amirkabir University of Technology,
P.O Box 15875-413
Tehran, Iran




S. K. Sadrnezhaad


Department of Materials Science and Engineering, Sharif University of Technology

P.O. Box 11365-9466, Tehran, Iran



*Corresponding Author


( Received: January 12, 2008 – Accepted in Revised Form: April 23, 2011 )

Abstract    Effects of pH, D2EHPA, Cyanex® 302 and Cyanex® 272 on extractions of zinc, manganese and cobalt from a Zn-Mn-Co-Cd-Ni containing solution was comprehensively investigated at the room temperature. The addition of Cyanex® 302 indicated a left-shifting-effect on the extraction curve of zinc, a right-shifting-effect on the extraction curve of manganese and no effect on the extraction of cobalt. The addition of Cyanex® 272 shifted all three curves to the right. The most suitable extractant for separation of zinc from manganese was therefore 0.3–0.3 mixture of D2EHPA with Cyanex® 302 and for separation of manganese from cobalt was sole D2EHPA. The stoichiometric coefficient for the extraction reaction of zinc (whether using pure D2EHPA or a mixture made of D2EHPA with Cyanex® 272 or Cyanex® 302) was 3. It varied from 4 to 5 for manganese, when the quantity of Cyanex® 302 dissolved in D2EHPA increased from 0 to 100%. Utilizing the above results, a two stage leaching was devised to recover zinc, manganese and cobalt from a complex solution. At the first stage, a 0.6M D2EHPA extractant could recover zinc and a scrubbing reaction with organic:aqueous (O:A) ratio of 20:1 could wash-out cadmium from the raffinate. In the second stage, the leaching residue was treated with 0.6M D2EHPA for recovery of manganese. This stage was then followed by a one-stage scrubbing of cobalt with O:A ratio of 20:1.


Keywords    Solvent Extraction, Zn, Mn, Co, Cd, Ni, D2EHPA, CYANEX® 272, CYANEX® 302, Stoichiometric Coefficient, Organic Aqueous Solution


چکیده    تاثير مقداربه طور جامع در دماي محيط Zn-Mn-Co-Cd-Ni استخراج روي، منگنز و كبالت از محلول آبي حاويباعث جابجائي منحني استخراج روي و منگنز به ترتيب به چپ و راست Cyanex® بررسي شد. افزودن 302باعث جابجائي منحني Cyanex® ميشود ولي تاثيري برروي منحني استخراج كبالت ندارد. افزودن 272Cyanex® و D2EHPA ۰/۳ -۰/ استخراج هر سه فلز به سمت راست ميشود. تركيب آلي حاوي ۳ميتوان كبالت و منگنز را از D2EHPA 302 شرايط مناسب جداكردن روي را ايجاد ميكند و با بكارگيريD2EHPA خالص يا مخلوط D2EHPA هم جدا ميكند. مقدار ضريب استوكيومتري استخراج روي برايبرابر ۳ است. اين مقدار براي منگنز با تغير نسبت Cyanex® يا 302 Cyanex® با حلالهاي 272از ۰ تا ۱۰۰ % بين ۴ تا ۵ تغيير ميكند. براساس آنچه كه گفته شد بازيابي D2EHPA به Cyanex® 302D2EHPA منگنز و كبالت در دو مرحله جداگانه صورت ميگيرد. در مرحله اول با استفاده از استخراج كنندهبرابر ۲۰ به (O:A) ۰ فلز روي بازيابي ميشود و بعد از شستشوي فاز آلي با نسبت آلي به آبي /۶ M با غلظت۲۰:۱ ) ناخالصكادميوم حذف ميشود. در مرحله دوم، باقيمانده مرحله اول نيز با استفاده از استخراج كننده ) ۱۰ فلز منگنز بازيابي ميشود. با بكارگيري يك مرحله شستشوي فاز آلي با نسبت /۶ M با غلظت D2EHPA۲۰:۱ ) ناخالصفلز كبالت از محلول آلي حذف ميشود.


1. Clark. S. J, Donaldson, J.D, Khan. Z. I.; 1996, Heavy metals in the environment. Part VI: Recovery of cobalt values from spent cobalt/manganese bromide oxidation catalysts. Hydrometallurgy 40 (3), 381-392. 

2. Zhang, P., Yokoyama, T., Itabashi, O., Suzuki, T.M., Inoue, K., 1998, Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy 47 (2-3), 259-271.

3. Wang, Y., Zhou, C., 2002, Hydrometallurgical process for recovery of cobalt from zinc plant residue”; Hydrometallurgy 63 (3), 225-234. 

4. Deniz Turan. M., Soner Altundogan, H, Tumen, F., 2004, Recovery of zinc and lead from zinc plant residue. Hydrometallurgy Vol.75 (1-4), 169-176. 

5. Jandova. J., Vu. H, Dvorak. P., 2005, Treatment of sulphate leach liquors to recover cobalt from waste dusts generated by the glass industry. Hydrometallurgy 77 (1-2), 67-73. 

6. Devi. N. B., Nathsarma. K.C., Chakravortty. V., 2000, Separation of divalent manganese and cobalt ions from sulphate solutions using sodium salts of D2EHPA, PC 88A and Cyanex 272. Hydrometallurgy 54 (2-3), 117-131. 

7. Chu Yong Cheng, 2000, Purification of synthetic laterite leach solution by solvent extraction using D2EHPA, Hydrometallurgy,  56, 3,  369-386 

8. Hoh. Y.C., Chuang. W.S., Lee. B. D., Chang. C. C., 1984, The separation of manganese from cobalt by D2EHPA. Hydrometallurgy 12 (3), 375-386.

9. Owusu, G.,.1998. Selective extractions of Zn and Cd from Zn-Cd-Co-Ni sulphate solution using di-2-ethylhexyl phosphoric acid extractant. Hydrometallurgy 47 (2-3), 205-215.  

10. Elejalde. C., Romero. F., Díaz. J.M., 1991, Separation and recovery of heavy metals from hydrometallurgical effluents by solvent extraction. Analytical and Bioanalytical Chemistry 340 (3), 182-185. 

11. Devi. N.B., Nathsarma. K.C., Chakravortty. V, 1997, Extraction and separation of Mn(II) and Zn(II) from sulphate solutions by sodium salt of Cyanex 272. Hydrometallurgy 45 (1-2), 169-179.  

12. Nagaosa, Y., Binghua, Y., 1997, Extraction equilibria of some transition metal ions by bis(2-ethylhexyl) phosphinic acid. Talanta 44 (3), 327-337. 

13. Keshvarz Alamdari, E., Moradkhani, D., Darvishi, D., Askari, M., Behnian, D., 2004. Synergistic effect of MEHPA on co-extraction of zinc and cadmium with DEHPA. Minerals Engineering 17 (1), 89-92.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir