IJE TRANSACTIONS A: Basics Vol. 26, No. 1 (January 2013) 51-58   

downloaded Downloaded: 218   viewed Viewed: 1682

M. Ahmadzadehtalatapeh and Y. H. Yau
( Received: October 02, 2012 – Accepted: November 15, 2012 )

Abstract    The using of double heat pipe based heat exchanger (HPHX) in a conventional fully fresh air air-conditioning (AC) system was examined in the present study. The fabricated HPHXs were tested under the actual conditions and the measured data were used to study the performance of the existing AC system (System A) and AC system equipped with the double HPHX (System B) for a yearly operation through modeling in the TRNSYS software. Simulation results showed that the System B with the six and eight-row HPHXs, could maintain the air conditions within the recommendations; however, it was found that the System B with double eight-row HPHXs is superior in terms of energy savings.


Keywords    heat pipe based heat exchanger, air-conditioning system, energy savings, TRNSYS software


چکیده    در تحقیق حاضر کاربرد دو مبدل حرارتی لوله ای همزمان در یک سیستم تهویه مطبوع معمول مورد بررسی قرار گرفته است. مبدلهای حرارتی لوله ایی ساخته شده در شرایط کارکرد واقعی تست و داده های بدست آمده برای مطالعه اثر مبدلها در سیستم تهویه موجود مورد استفاده قرار گرفته است. به این منظور عملکرد سیستم موجود (سیستم A) و سیستم مجهز به دو مبدل حرارتی لوله ای (سیستمB ) در طول عملکرد یک ساله توسط نرم افزار شبیه ساز سیستمها در محیط نرم افزار TRNSYS مورد ارزیابی قرار گرفته است. نتایج شبیه سازی نشان می دهد که سیستم B مجهز به دو مبدل حرارتی لوله ای شش و هشت ردیفه شرایط هوا را منطبق با استانداردها فراهم می نمایند. عملکرد سیستمها از نظر میزان مصرف انرژی نشان می دهد که سیستم B با دو مبدل حرارتی هشت ردیفه عملکرد بهتری نسبت به دو مبدل شش ردیفه داشته و قابلیت صرفه جویی بیشتری در انرژی را دارد.


1.        Lombard, L.P., Orti, J. and Pout, C., “A Review on buildings energy consumption information”, Energy and Buildings,    Vol. 40, (2008), 394–398.

2.        Abdeen, M.O., “Energy, environment and sustainable development”, Renewable Sustainable Energy Reviews,       Vol. 12, (2008), 2265–2300.

3.        Instituto para la diversificacion y Ahorro de la energı´a (IDAE), Eficiencia energe´tica y energı´as renovables (No. 8), Madrid, October (2006).

4.        ASHRAE Standard 170P Atlanta, “Ventilation of Health Care Facilities”, American Society for Heating, Refrigerating and Air-Conditioning Engineers Inc.”, Atlanta, GA, (2006).

5.        Dunn, P. and Reay, D., “Heat Pipes”, 4th, ed, Pergamon, (1994).

6.        Shirey III, D.B., ”Demonstration of efficient humidity control techniques at an art museum”, ASHRAE Transactions, Vol. 99, (1993), 694–703.

7.        ASHRAE, “ASHRAE Standard 62-1989”, Washington DC, USA, (1989).

8.        Bearg, D., “Indoor air quality and humidity control”, Air conditioning, Heating and Refrigeration News, (1992).

9.        Yau, Y.H., ”The use of a double heat pipe heat exchanger system for reducing energy consumption of treating ventilation air in an operating theatre—A full year energy consumption model simulation”, Energy and Buildings, Vol. 40, (2008), 917-925.

10.     Yau, Y.H., “Application of a heat pipe heat exchanger to dehumidification enhancement in tropical HVAC systems—A baseline performance characteristics study”, International Journal of Thermal Sciences, Vol. 46, No. 2, (2007), 164–171.

11.     Yau, Y. H. and Ahmadzadehtalatapeh, M., “Empirical Study of an Air-To-Air Heat Pipe Heat Exchanger in Tropical Climates”, Experimental Heat Transfer, Vol. 24, (2011), 313–334.

Yau, Y. H. and Ahmadzadehtalatapeh, M., “The empirical study of a four-row heat pipe heat exchanger to predict the year-round energy recovery in the tropics”, Building services engineering research and technology, Vol. 32, No. 4, (2011), 307-327.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir