IJE TRANSACTIONS A: Basics Vol. 26, No. 1 (January 2013) 59-72   

downloaded Downloaded: 291   viewed Viewed: 1860

G. Ghassabi and M. Kahrom
( Received: August 30, 2012 – Accepted: November 15, 2012 )

Abstract    The present study attempts to improve heat transfer efficiency of a domestic gas burner by enhancing heat transfer from flue gases. Heat transfer can be augmented using the obstacles that are inserted into the flow field near the heated wall of the domestic gas burner. First, to achive the maximum efficiency, the insert geometry is optimized by the multi-objective genetic algorithm so that heat transfer is maximized while minimizing the skin frication. Then, the heating unit is modeled as a three dimensional physical domain. The conservation equations of mass, momentum, energy and species are discretized over the meshing system of control volumes in the domain. The experimental set-up is equally established to measure and validate the numerical results. The effect of the inserts on heat transfer enhancement is studied both numerically and experimentally. The results show that the optimal insert is a triangle with the scaled area of 12.4 mm2. Also, the results indicate that the optimal inserts led to the improvement of heat transfer efficiency by 2.7% compared with the case of similar environment with no insert.


Keywords    Pareto front, Heat transfer efficiency, Skin friction, Reynolds Analogy, Probability density function


چکیده    در مطالعه حاضر افزايش راندمان حرارتی يک بخاری گازسوز خانگی بوسيله افزايش انتقال حرارت از گازهای دودکش مورد بررسی قرار می گيرد. انتقال حرارت می تواند بوسيله قراردادن موانعی در مسير جريان و در نزديکی جداره گرم محفظه احتراق افزايش يابد. ابتدا برای دستيابی به ماکزيمم راندمان حرارتی، هندسه مانع با استفاده از الگوريتم ژنتيک چند هدفه بهينه سازی می شود به گونه ای که انتقال حرات ماکزيمم و اصطکاک سطحی مينيمم باشد. سپس نمونه سه بعدی بخاری، مدل سازی شده و معادلات بقای جرم، ممنتوم، انرژی و گونه ها به روش حجم محدود حل می گردد. همچنين صحت نتايج عددی با نتايج آزمايشگاهی مورد بررسی قرارگرفته و اثر مانع بر روی افزايش انتقال حرارت به طور عددی و آزمايشگاهی مطالعه می شود. نتايج نشان می دهد مانع بهينه، يک مثلث به مساحت نسبی 4/12 ميليمتر مربع می باشد. همچنين نتايج نشان می دهد موانع بهينه، سبب افزايش راندمان حرارتی به ميزان 7/2% نسبت به حالت بدون مانع می شود


1.     Tajwar, S., Saleemi, A.R., Ramzan, N. and Naveed, S., “Improving thermal and combustion efficiency of gas water heater”, Applied Thermal Engineering, Vol. 31, (2011), 1305-1312.

2.     Perry, L.Y., “Surface roughness effects on heat transfer in micro scale single phase”, Proceedings of the Sixth International ASME Conference on Nano channels,Micro channels and Mini channels, Darmstadt,Germany, 2008.

3.     Suzue, Y., Morimoto, K., Shikazono, N., Suzuki, Y. and Kasagi, N., “High performance heat exchanger with oblique wavy walls”, 13th international Heat Transfer Conference, Sydney,Australia, 2006.

4.     Shuja, S.Z., Yilbas, B.S., Iqbal, M.O. and Budair, M.O., “Flow through a protruding bluff body–heat and irreversibility analysis”, exergy, Vol. 1, (2001), 209–215.

5.     Zhdanov, V.L. and Papenfuss, H.D., “Bluff body drag control by boundary layer disturbances”, Experiments in Fluids, Vol. 34, (2003), 460–466.

6.     Kahrom, M., Farievar, S. and Haidarie, A., “The effect of square splittered and unsplittered rods in flat plate heat tansfer enhancement”, International Journal of Engineering, Vol. 20, (2007), 83-94.

7.     Inaoka, J., Yamamoto, J. and Suzuki, K., “Dissimilarity between heat transfer and momentum transfer in a disturbed boundary layer with insertion of a rod modeling and numerical simulation”, International Journal of Heat and Fluid Flow, Vol. 20, (1999), 290-301.

8.     Teraguchi, K., Katoh, K. and Azuma, T., “Dissimilarity between turbulent momentum and heat transfer by excitation of transverse vortex”, Journal of The Japan Society of Mechanical Engineers, Vol. 80, (2005).

9.     Kahrom, M., Haghparast, P. and Javadi, S.M., “Optimization of heat transfer enhancement of a flat plate based on pareto genetic algorithm ”, International Journal of Engineering, Vol. 23, (2010), 177-190.

10.   Kong, H., Choi, H. and Lee, J.S., “Dissimilarity between the velocity and temperature fields in a perturbed turbulent thermal boundary layer”, Physics Of Fluids, Vol. 13, (2001), 1466.

11.   MacCormack, W., Tutty, O.R., Rogers, E. and Nelson, P.A., “Stochastic optimization based control of boundary layer transition”, Control Engineering Practice, Vol. 10, (2002), 243-260.

12.   Leng, G.S.B. and Ng, T.T.H., “Application of genetic algorithms to conceptual design of a micro-air vehicle”, Engineering Applications of Artificial Intelligence, Vol. 15, (2002), 439–445.

13.   Amanifard, A., Nariman-Zadeh, N., Borji, M., Khlkhali, A. and Habibdoust, A., “Modeling and Pareto optimization of heat transfer and flow coefficients in micro channels using GMDH type neutral networks and genetic algorithms”, Journal of Energy Conversion and Management, Vol. 49, (2008), 311-325.

14.   Xie, G.N., Sunden, B. and Wang, Q.W., “Optimization of compact heat exchangers by a genetic algorithm”, Applied Thermal Engineering, Vol. 28, (2008), 895– 906.

15.   Gholap, A.K. and Khan, J.A., “Design and multi-objective optimization of heat exchangers for refrigerators”, Journal of Applied Energy, Vol. 84, (2007), 1226– 1239.

16.   Amanifard, N., Hajiloo, A. and Tohidi, N., “Using neural networks and genetic algorithms for modeling and multi-objective optimal heat exchange through a tube bank ”, International Journal of Engineering, Vol. 25, (2012), 323-332.

17.   Hilbert, R., Jaiga, G., Barn, R. and Thevenin, D., “Multi-objective shape optimization of a heat exchanger using parallel genetic algorithms”, International Journal of Heat and Mass Transfer, Vol. 49, (2006), 2567-2577.

18.   Yakhot, V. and Orszag, S., “Renormalization group and local order in strong turbulence ”, Nuclear Physics B- Proceedings Supplements, Vol. 2, (1986), 417-440.

19.   Gosselin, L., Gingras, M.T. and Potvin, F.M., “Review of utilization of genetic algorithms in heat transfer problems”, International Journal of Heat and Mass Transfer, Vol. 52, (2009), 2169–2188.

20.   Kahrom, M., Khoshnewis, A.B. and Bani Hashemi, H., “Hot Wire Anemometry in the Wake of Trapezoidals in the Vicinity of a Falt Plate”, Repot No. 40258, Faculty of Engineering, Ferdowsi University of Mashhad, (2009).

21.           Incropera, F.P. and DeWitt, D.P., “Fundamentals of Heat and Mass Transfer”, 5th ed., Wiley and Sons, (2001)

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir