Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 26, No. 10 (October 2013) 1103-1110   

downloaded Downloaded: 270   viewed Viewed: 1957

  RELIABILTY-BASED TORSIONAL DESIGN OF REINFORCED CONCRETE BEAMS STRENGTHENED WITH CFRP LAMINATE
 
H. Dehghani and M. J. Fadaee
 
( Received: February 23, 2013 – Accepted in Revised Form: May 16, 2013 )
 
 

Abstract    The structural reliability of torsional concrete beams strengthened with full and strip wrapping of carbon fiber reinforced polymer (CFRP) laminate is investigated. The first order-second moment reliability method has been applied to make a reliability assessment on the torsional capacity design by technical guideline in Iran. The code No.345 published by the Management and Planning Organization of Iran (MPO 345-2006) is the first technical code in Iran for design of concrete members strengthened with CFRP laminate. In this work, the average reliability indexes for unstrengthened, strengthened with full wrap and strengthened with strip wrap beams have been found. The results indicate that the MPO design guideline are some unconservative. A reliability strengthening ratio is introduced for assessment of the variation in average reliability index before and after strengthening with different resistance factors. A parametric study on this factor reveals that if the reliability level of the strengthened reinforced concrete beams is kept to be consistent with their similar unstrengthened beams, a value of 0.89 and 0.81 for strengthened with full wrap and strengthened with strip wrap, respectively, should be applied.

 

Keywords    CFRP Laminate, Reliability Indexes, Torsion, Concrete Beams, MPO Guideline

 

چکیده    در این مقاله قابلیت اطمینان سازه ای تیرهای بتن آرمه تقویت شده با پلیمرهای مسلح شده با الیاف کربن((CFRP به صورت دورپیچ کامل و نواری تحت اثر پیچش بررسی شده است. برای ارزیابی قابلیت اطمینان ظرفیت پیچشی، طراحی بر اساس راهنمای طراحی ایران انجام و سپس روش قابلیت اطمینان مرتبه اول- لنگر دوم بکار برده شده است. اولین آیین نامه برای طراحی اعضای بتن آرمه تقویت شده با CFRP در ایران، نشریه شماره 345 سازمان مدیریت و برنامه ریزی کشور (MPO 345-2006) می باشد. در تحقیق حاضر، میانگین شاخص قابلیت اطمینان برای تیرهای تقویت نشده و تیرهای تقویت شده با دورپیچ کامل و نواری بدست آمده است. نتایج نشان میدهد که راهنمای طراحی MPO تاحدی غیر محافظه کارانه است. برای ارزیابی تغییرات میانگین شاخص قابلیت اطمینان قبل و بعد از مقاوم سازی با ضرایب مقاومت مختلف، یک نسبت مقاومت ایمن معرفی شده است. مطالعه پارامتری این ضریب نشان میدهد که اگر تراز قابلیت اطمینان تیرهای بتن آرمه تقویت شده با تیرهای بتن آرمه مشابه تقویت نشده ثابت نگه داشته شود بایستی به ترتیب مقدار 89.0 و 81.0 به عنوان ضریب مقاومت برای تیرهای تقویت شده با دورپیچ کامل ونواری بکار برده شود.

References   

 

1.     Riyazi, M., Esfahani, M. R. and Mohammadi, H., "Behavior of coupling beams strengthened coupling beams strengthened with carbon fiber reinforced polymer sheets", International Journal of Engineering,  Vol. 20, No. 1, (2007), 49-58.

2.     Hashemi, S. H., Rahgozar, R. and Maghsoudi, A., "Flexural testing of high strength reinforced concrete beams strengthened with cfrp sheets", International Journal of Engineering, Transaction B,  Vol. 22, No. 2, (2009), 131-146.

3.     Esfahani, M. R., "Axial compressive strength of reinforced concrete columns wrapped with fiber reinforced polymers (frp)", International Journal of Engineering,  Vol. 18, (2004).

4.     Bakis, C. E., Ganjehlou, A., Kachlakev, D. I., Schupack, M., Balaguru, P., Gee, D. J., Karbhari, V. M., Scott, D. W., Ballinger, C. A., and Gentry, T. R., "Guide for the design and construction of externally bonded frp systems for strengthening concrete structures", Reported by ACI Committee,  Vol. 440, No., (2002).

5.     ISIS, "Design manual strengthening reinforced concrete structures with externally-bonded fiber-reinforced polymers", Winnipeg, Manitoba, Canada,,(2001).

6.     Fib, "Externally bonded frp reinforcement for reinforced concrete structures", International Federation for Structural Concrete (CEB-FIP) Technical Rep, (2001).

7.     (MPO), M. a. P. O., "The guideline for design specification of strengthening reinforced concrete buildings using fiber reinforced polymers (frp)", Office of Technical Affairs Deputy, Iran, (2006).

8.     Plevris, N., Triantafillou, T. C. and Veneziano, D., "Reliability of rc members strengthened with cfrp laminates", Journal of Structural Engineering,  Vol. 121, No. 7, (1995), 1037-1044.

9.     Okeil, A. M., El-Tawil, S. and Shahawy, M., "Flexural reliability of reinforced concrete bridge girders strengthened with carbon fiber-reinforced polymer laminates", Journal of bridge engineering,  Vol. 7, No. 5, (2002), 290-299.

10.   El-Tawil, S. and Okeil, A. M., "Lrfd flexural provisions for prestressed concrete bridge girders strengthened with carbon fiber-reinforced polymer laminates", ACI Structural Journal,  Vol. 99, No. 2, (2002).

11.   He, Z., Shang, M. H. and Li, X. M., "Reliability-based shear design for reinforced concrete beams with u-wrap frp strengthening", Key Engineering Materials,  Vol. 400, No., (2009), 525-530.

12.   Wang, N., Ellingwood, B. R. and Zureick, A.-H., "Reliability-based evaluation of flexural members strengthened with externally bonded fiber-reinforced polymer composites", Journal of Structural Engineering,  Vol. 136, No. 9, (2010), 1151-1160.

13.   Wieghaus, K. T. and Atadero, R. A., "Effect of existing structure and frp uncertainties on the reliability of frp-based repair", Journal of Composites for Construction,  Vol. 15, No. 4, (2010), 635-643.

14.   (MPO), M. a. P. O., " Iranian concrete code, mpo 120, office of technical affairs deputy, iran",  (2000).

15.   Choi, S.-K., Grandhi, R. V. and Canfield, R. A., "Reliability-based structural design", ISBN 978-1-84628-444-1. Berlin: Springer,  Vol. 1, (2006).

16.   Ellingwood, B., Galambos, T. V., MacGregor, J. G. and Cornell, C. A., " Development of a probability based load criterion for american national standard a58 building code requirements for minimum design loads in buildings and other structures", Special Publication 577, US Department of Commerce, National Bureau of Standards, Washington, DC, USA, (1980).

17.   Nowak, A. S. and Collins, K. R., "Reliability of structures",  (2012).

18.   Iervolino, I. and Galasso, C., "Comparative assessment of load–resistance factor design of frp-reinforced cross sections", Construction and Building Materials,  Vol. 34, (2012), 151-161.

19.   He, Z. and Qiu, F., "Probabilistic assessment on flexural capacity of gfrp-reinforced concrete beams designed by guideline aci 440.1 r-06", Construction and Building Materials,  Vol. 25, No. 4, (2011), 1663-1670.

20.   Ameli, M., Ronagh, H. R. and Dux, P. F., "Behavior of frp strengthened reinforced concrete beams under torsion", Journal of Composites for Construction,  Vol. 11, No. 2, (2007), 192-200.

21.   Ghobarah, A., Ghorbel, M. and Chidiac, S., "Upgrading torsional resistance of reinforced concrete beams using fiber-reinforced polymer", Journal of Composites for Construction,  Vol. 6, No. 4, (2002), 257-263.

22.   Mohamadizadeh, M. R., Experimental and analytical investigation on behaviour of cfrp strengthened high strength concrete beams under torsion., Shahid Bahonar University,: Kerman, Iran, (2009)

23.   Panchacharam, S. and Belarbi, A., "Torsional behavior of reinforced concrete beams strengthened with frp composites", in First FIB Congress, Osaka, Japan, (2002), 1-11.

24.   Hii, A. K. Y. and Al-Mahaidi, R., Torsional strengthening of reinforced concrete beams using cfrp composites, in 2nd International conference on FRP Composites in Civil Engineering., Taylor and Francis, London: Adelaide, Australia, (2004), 551-559.

25.   Zhang, J., Lu, Z. and Zhu, H., "Experimental study on the behaviour of rc torsional members externally bonded with cfrp", in FRP Composites in Civil Engineering. Proceedings of the International Conference on FRP composites in Civil Engineering. Vol., No., (2001).

26.   Mohammadizadeh, M. and Fadaee, M., "Torsional behaviour of high-strength concrete beams strengthened using cfrp sheets; an experimental and analytical study", Transaction A: Civil Engineering,  Vol. 16, No. 4, (2009), 321-330.

27.   Biondini, F., Bontempi, F., Frangopol, D. M. and Malerba, P. G., "Reliability of material and geometrically non-linear reinforced and prestressed concrete structures", Computers & Structures,  Vol. 82, No. 13, (2004), 1021-1031.

28.           Dehghani, H. and Fadaee, M. J., "Calibration of resistance factors for torsional reinforced concrete beams strengthened with frp composites", Asian Journal of Civil Engineering,  Vol. 14, No. 4, (2013), 503-516. 





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir