IJE TRANSACTIONS A: Basics Vol. 26, No. 10 (October 2013) 1155-1168   

downloaded Downloaded: 111   viewed Viewed: 2259

B. Ghahraman
( Received: December 27, 2012 – Accepted: May 16, 2013 )

Abstract    Climate variability and change is threatening water resources around the world. One hundred and fourtheen (114) stations from Reference Hydrometric Basin Network (RHBN) around Canada with at least 30 years continuous data (up to 2011) were selected to study the trend in mean annual runoff for different periods of 30 to 100 years in step 10 years by non-parametric Mann-Kendall test. Effect of short term persistant (STP) and long term persistant (LTP) on this test were made through lag 1 serial correlation (r1) and Hurst exponent (H), respectively. r1 for about one third of the total cases considered were negative. H, based on “equivalent Normal deviate” (eNv), was slightly right-skewed with minimum and maximum values of 0.20 and 0.87, respectively. About half of the data sets were anti-persistant (H<0.5). No regional pattern was found for r1 and H. Based on five stations with around 100 years data, it was shown that r1 and H are unstable for record length, roughly, up to 50 years. r1 and H were highly coorrelated (r=0.86). H from eNd were smaller than H from original data by around 10% with high correlation (r=0.87). Under classic Mann-Kendall ttrend test, different time periods of different stations showed different trend direction and significancy, which admits for abrupt change in trend direction and significancy for different time periods. On overal, more than 60% of cases there were no gnificant trends (i.e. p-value>0.1). The number of positive and negative trends, were nearly the same, though fluctuating for different time spans. p-value after pre-whitening was highly correlated with those of before pre-whitening, for both negatve and positive trends. There were about 16% of cases that pre-whitening decreased the p-values of the Mann-Kendall trend test, where nearly all of them were negatively trended. The effect of LTP on Mann-Kendall trend test was minor, due to inconsistancy of originally significant trend case and significant H of greater than 0.5. For recent 30 years length of record (1982-2011), British Columbia is experiencing positive trends in the west and negative trend in the east. Most parts of the New Brunswick is experincing the positive trend, while negative trend is due to Southeast of Ontario. For the more logest duration of 40 years, trend statistics and geographical pattern were changed. While the significant trends are decreased, more significant negative trends are governed over New Brunswick. There is no positive trend in British Colimbia in the past 50 years (1962-2011) while there are both negative and positive trends in New Brunswick and negative trends are switched to positive trends in south east of Ontario. For long duration of > 70 years, there are only positive trends in Southeast of Canada (South New Brunswick and South East of Ontario) while centeral and East of Canada have experinced a negative trend.


Keywords    Climate change, Climate variablility, Hurst exponent, Hydrology, Lag 1 serial correlation, Long-memory process


چکیده    تغييرپذيری و تغيير اقليم منابع آب در جهان را تهديد می­کند. تعداد 114 ايستگاه از شبکه­ی مرجع آب­سنجی حوضه (RHBN) در کانادا با دست­کم 30سال آمار پيوسته (تا سال 2011) برای بررسی روند متوسط روان­آب سالانه متناظر با 30 تا 100 سال در بازه­های 10 سال با آزمون ناپامتری من-کندال درنظر گرفته شد. از ضريب خودهمبستگی با تاخير 1 (r1) و نمايه­ی هرست (H) به­ترتيب برای بيان تاثير پايداری کوتاه-مدت (STP) و بلند-مدت (LTP) بر روی اين آزمون استفاده شد. r1 برای حدود يک­سوم حالات منفی بود. توزيع H، برمبنای "متغير نرمال معادل" (eNv)، اندکی چوله به راست بود و کمينه و بيشينه­ی آن به­ترتيب 20/0 و 87/0 بود. تقريبا نيمی از حالات ضد-پايدار (H<0.5) بودند. نه r1 و نه H از خود الگوی منظم مکانی نشان ندادند. برمبنای 5 ايستگاه با حدود 100 سال داده، r1 و H برای سری­هايي با طول کم­تر از 50 سال شديدا ناپايدار بود. r1 و H به­خوبی (r=0.86) همبسته بودند. H برمبنای eNv حدود 10% از H برمبنای داده­های اصلی کوچک­تر بوده و همبستگی آن­ها با هم بالا (r=0.87) بود. برمبنای آزمون کلاسيک من-کندال جهت روند و معنی­داری آن برای بازه­های متفاوت ايستگاه­ها کاملا متفاوت بود. در مجموع روند در بيش از 60% از حالات معنی­دار نبوده (p-مقدار بزرگ­تر از 1/0) و تعداد روندهای مثبت و منفی تقريبا برابر بود. p-مقدار، هم برای روندهای مثبت و هم منفی، پس از پيش­سفيدسازی با پس از آن شديدا همبسته بود. در حدود 16% حالت­ها، عمدتا برای روندهای منفی، پيش­سفيدسازی p-مقدار آزمون روند را کاهش داد. به­دليل مقارن نبودن معنی ­دار بودن روند در حالت کلاسيک آزمون و معنی­دار بودن H (بزرگ­تر از 5/0)، تاثير LTP بر روی آزمون روند من-کندال ناچيز بود. برمبنای 30 سال اخير (1982-20111)، روند در غرب و شرق بريتيش کلمبيا به­ترتيب مثبت و منفی بود. روند در بيش­ترين بخش­های نيوبرانزويک مثبت ولی در جنوب انتاريو منفی بود. در دوره­ی 40 ساله، روندهای معنی­دار کاهش يافت و بيش­ترين معنی­داری منفی در نيوبرانزويک بود. در دوره­ی 50 ساله (1962-2011) هيچ روند مثبت در بريتيش کلمبيا وجود نداشت درحالی­که هر دو نوع روندهای مثبت و منفی در نيوبرانزويک حکم­فرما بوده و روندهای منفی در جنوب­شرق انتاريو به مثبت تبديل شدند. در دوره­ی طولانی­تر (بيش­تر از 70 سال)، روند مثبت در جنوب­شرق کانادا (جنوب نيوبرانزويک و جنوب­شرق انتاريو) و روند منفی در نواحی مرکزی و شرق آن وجود داشت.


1.     Chen, Z., Grasby, S., Osadetz, K. and Fesko, P., "Historical climate and stream flow trends and future water demand analysis in the calgary region, canada", Water science and technology,  Vol. 53, No. 10, (2006), 1-12.

2.     Tanzeeba, S. and Gan, T. Y., "Potential impact of climate change on the water availability of south saskatchewan river basin", Climatic change,  Vol. 112, No. 2, (2012), 355-386.

3.     Birsan, M.-V., Molnar, P., Burlando, P. and Pfaundler, M., "Streamflow trends in switzerland", Journal of Hydrology,  Vol. 314, No. 1, (2005), 312-329.

4.     Ehsanzadeh, E., Kamp, G. and Spence, C., "The impact of climatic variability and change in the hydroclimatology of lake winnipeg watershed", Hydrological Processes,  Vol. 26, No. 18, (2012), 2802-2813.

5.     Hamed, K. H., "Trend detection in hydrologic data: The mann–kendall trend test under the scaling hypothesis", Journal of Hydrology,  Vol. 349, No. 3, (2008), 350-363.

6.     Zhang, X., Brown, R., Vincent, L., Skinner, W., Feng, Y., and Mekis, E., "Canadian climate trends, 1950-2007", Canadian Councils of Resource Ministers,  (2011).

7.     Zhang, X., Zwiers, F. W. and Stott, P. A., "Multimodel multisignal climate change detection at regional scale", Journal of Climate,  Vol. 19, No. 17, (2006), 4294-4307.

8.     Lawrimore, J. H. and Peterson, T. C., "Pan evaporation trends in dry and humid regions of the united states", Journal of Hydrometeorology,  Vol. 1, No. 6, (2000), 543-546.

9.     Sulis, M., Paniconi, C., Rivard, C., Harvey, R. and Chaumont, D., "Assessment of climate change impacts at the catchment scale with a detailed hydrological model of surfacesubsurface interactions and comparison with a land surface model", Water Resources Research,  Vol. 47, No. 1, (2011).

10.   Lins, H. F. and Slack, J. R., "Streamflow trends in the united states", Geophysical research letters,  Vol. 26, No. 2, (1999), 227-230.

11.   Burn, D. H., Sharif, M. and Zhang, K., "Detection of trends in hydrological extremes for canadian watersheds", Hydrological Processes,  Vol. 24, No. 13, (2010), 1781-1790.

12.   Coulibaly, P. and Burn, D. H., "Spatial and temporal variability of canadian seasonal streamflows", Journal of Climate,  Vol. 18, No. 1, (2005), 191-210.

13.   Ehsanzadeh, E., Ouarda, T. B. and Saley, H. M., "A simultaneous analysis of gradual and abrupt changes in canadian low streamflows", Hydrological Processes,  Vol. 25, No. 5, (2011), 727-739.

14.   Ehsanzadeh, E. and Adamowski, K., "Trends in timing of low stream flows in canada: Impact of autocorrelation and longterm persistence", Hydrological Processes,  Vol. 24, No. 8, (2010), 970-980.

15.   Whitfield, P. H. and Cannon, A. J., "Recent variations in climate and hydrology in canada", Canadian Water Resources Journal,  Vol. 25, No. 1, (2000), 19-65.

16.   Adamowski, K. and Bocci, C., "Geostatistical regional trend detection in river flow data", Hydrological Processes,  Vol. 15, No. 18, (2001), 3331-3341.

17.   Burn, D. H. and Hag Elnur, M. A., "Detection of hydrologic trends and variability", Journal of Hydrology,  Vol. 255, No. 1, (2002), 107-122.

18.   Cunderlik, J. M. and Burn, D. H., "Local and regional trends in monthly maximum flows in southern british columbia", Canadian Water Resources Journal,  Vol. 27, No. 2, (2002), 191-212.

19.   Pilon, P. and Yue, S., "Detecting climate-related trends in streamflow data", Water Science & Technology,  Vol. 45, No. 8, (2002), 89-104.

20.   Yue, S., Pilon, P. and Cavadias, G., "Power of the mann–kendall and spearman's rho tests for detecting monotonic trends in hydrological series", Journal of Hydrology,  Vol. 259, No. 1, (2002), 254-271.

21.   Yue, S., Pilon, P., Phinney, B. and Cavadias, G., "The influence of autocorrelation on the ability to detect trend in hydrological series", Hydrological Processes,  Vol. 16, No. 9, (2002), 1807-1829.

22.   Déry, S. J., Mlynowski, T. J., Hernández-Henríquez, M. A. and Straneo, F., "Interannual variability and interdecadal trends in hudson bay streamflow", Journal of Marine Systems,  Vol. 88, No. 3, (2011), 341-351.

23.   Assani, A. A., Landry, R., Daigle, J. and Chalifour, A., "Reservoirs effects on the interannual variability of winter and spring streamflow in the st-maurice river watershed (quebec, canada)", Water resources management,  Vol. 25, No. 14, (2011), 3661-3675.

24.   Déry, S. J., Hernández-Henríquez, M. A., Owens, P. N., Parkes, M. W. and Petticrew, E. L., "A century of hydrological variability and trends in the fraser river basin", Environmental Research Letters,  Vol. 7, No. 2, (2012), 024019.

25.   Janowicz, J. R., "Streamflow responses and trends between permafrost and glacierized regimes in north western canada", in Cold Region Hydrology in a Changing Climate symposium H02 held during IUGG2011 in Melbourne, Australia, IAHS. Vol., No., (2011), 9-14.

26.   Woo, M.-K. and Thorne, R., "Streamflow in the mackenzie basin, canada", Arctic,  Vol., No., (2003), 328-340.

27.   Milly, P., Julio, B., Malin, F., Robert, M., Zbigniew, W., Dennis, P., and Ronald, J., "Stationarity is dead", Ground Water News & Views,  Vol. 4, No. 1, (2007), 6-8.

28.   Zhang, X., Harvey, K. D., Hogg, W. and Yuzyk, T. R., "Trends in canadian streamflow", Water Resources Research,  Vol. 37, No. 4, (2001), 987-998.

29.   Hamed, K. H. and Ramachandra Rao, A., "A modified mann-kendall trend test for autocorrelated data", Journal of Hydrology,  Vol. 204, No. 1, (1998), 182-196.

30.   Villarini, G., Serinaldi, F., Smith, J. A. and Krajewski, W. F., "On the stationarity of annual flood peaks in the continental united states during the 20th century", Water Resources Research,  Vol. 45, No. 8, (2009), W08417.

31.   Harvey, K., Pilon, P. and Yuzyk, T., "Canada's reference hydrometric basin network (rhbn): In partnerships in water resource management, paper presented at cwra 51st annual conference, can", Water Resour. Assoc., Halifax, Nova Scotia,  Vol., No., (1999).

32.   Pilon, P. and Kuylenstierna, J., "Pristine river basins and relevant hydrological indices: Essential ingredients for climate-change studies", WMO Bulletin,  Vol. 49, No. 3, (2000), 248-254.

33.   Whitfield, P. H., Pilon, P. J., Burn, D. H., Arora, V., Lins, H. F., Ouarda, T., Sellars, C. D., and Spence, C., "Climate variability and change - rivers and streams. In: Environmental canada. 2004. Threats to water availability in canada. National water research institute, burlington, ontario. Available at: Http://www.Ec.Gc.Ca/inre-nwri/default.Asp?Lang=en&n=0cd66675-1&offset=16&toc=show",  Vol., No., (2012).

34.   Mann, H. B., "Nonparametric tests against trend", Econometrica: Journal of the Econometric Society,  Vol., No., (1945), 245-259.

35.   Kendall, M. G., "Rank correlation methods",  Vol., No., (1948).

36.   von Storch, H., "Misuses of statistical analysis in climate research", Springer,  (1999).

37.   McLeod, A. I. and Hipel, K. W., "Preservation of the rescaled adjusted range: 1. A reassessment of the hurst phenomenon", Water Resources Research,  Vol. 14, No. 3, (1978), 491-508.

38.   Kulkarni, A. and von Storch, H., "Monte carlo experiments on the effect of serial correlation on the mann-kendall test of trend", Meteorologische Zeitschrift,  Vol. 4, No. 2, (1995), 82-85.

39.   Rivard, C. and Vigneault, H., "Trend detection in hydrological series: When series are negatively correlated", Hydrological Processes,  Vol. 23, No. 19, (2009), 2737-2743.

40.   Arnell, N. W., Brown, R. P. and Reynard, N. S., "Impact of climatic variability and change on river flow regimes in the uk", Institute of Hydrology,  (1990).

41.   FANTA, B., Zaake, B. and Kachroo, R., "A study of variability of annual river flow of the southern african region", Hydrological sciences journal,  Vol. 46, No. 4, (2001), 513-524.

42.   Hurst, H. E., "{long-term storage capacity of reservoirs}", Trans. Amer. Soc. Civil Eng.,  Vol. 116, No., (1951), 770-808.

43.   Ghahraman, B., "Time trend in the mean annual temperature of iran", Turk J Agric For,  Vol. 30, No., (2006), 439-448.

44.   Khaliq, M. and Gachon, P., "Pacific decadal oscillation climate variability and temporal pattern of winter flows in northwestern north america", Journal of Hydrometeorology,  Vol. 11, No. 4, (2010), 917-933.

45.   Zhang, X., Vincent, L. A., Hogg, W. and Niitsoo, A., "Temperature and precipitation trends in canada during the 20th century", Atmosphere-Ocean,  Vol. 38, No. 3, (2000), 395-429.

46.   Min, S.-K., Zhang, X. and Zwiers, F., "Human-induced arctic moistening", Science,  Vol. 320, No. 5875, (2008), 518-520.

47.           Yue, S. and Wang, C. Y., "A study of variability of annual river flow of the southern african region", Hydrological sciences journal,  Vol. 47, No. 6, (2002), 983-987.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir