|

|
IJE TRANSACTIONS A: Basics Vol. 26, No. 10 (October 2013) 1191-1202
|
Downloaded:
150 |
|
Viewed:
1826 |
|
|
THE PERFORMANCE OF AN HEXAHEDRON C* ELEMENT IN FINITE ELEMENT ANALYSIS
|
|
|
G. H. Majzoobi and B. Sharifi Hamadani
|
|
|
( Received:
November 26, 2012
– Accepted: April 18, 2013 )
|
|
|
Abstract
The performance of an 8-noded hexahedron C1* element in elasticity is investigated. Three translational
displacements and their derivatives as strain in each direction are considered as degrees of freedom (d.o.f.’s) at
each node. The geometric mapping is enforced using a C0 element with no derivative as nodal d.o.f.’s .
The stiffness matrix of the element is also computed using a transformation matrix obtained from an equivalent
C0 element. The results obtained from elastic stress analysis of a cantilever show that: (i) the convergence
rate of 8-noded C1* element is nearly equal to its equivalent C0 element, while it consumes less
CPU time with respect to the C0 element; (ii) the element has successfully passed the patch and distortion
tests; (iii) the condition number of the stiffness matrix for C1* element is less than the C0
element; (iv) the directly computation of strains as derivative degrees of freedom at the nodes along with excellent
convergence makes the C1* element superior compared with its equivalent C0 element.
|
|
|
Keywords
Elasticity, Finite element method, elements, Convergence, elements.
|
|
|
چکیده
عملکرد یک المان مکعبی هشت گره ای نوع C1* در الاستیسیته بررسی گردیده است. سه تغییر مکان انتقالی و مشتقات آن ها به عنوان کرنش در هرجهت به عنوان درجات آزادی در هر گره در نظر گرفته شده است. نگاشت هندسی با استفاده از المان C0 که هیچ مشتقی به عنوان درجات آزادی گره ای ندارد اعمال می گردد. همچنین ماتریس سختی المان با استفاده از یک ماتریس تبدیل که از المان C0 معادل آن به دست می آید محاسبه گردیده است. نتایج به دست آمده از تحلیل تنش الاستیک یک تیر یک سرگیردار نشان می دهد که : (1) نرخ همگرایی المان هشت گره ای نوع C1* تقریباً معادل المان معادل نوع C0 آن است در حالی که زمان پردازش کمتری نسبت به المان C0 صرف می گردد. (2) المان به طور موفقیت آمیز تست های مسیر و اعوجاج را پشت سر گذاشته است. (3) عدد حالت مربوط به ماتریس سختی المان C1* کمتر از المان C0 است. (4) محاسبه کرنش ها به طور مستقیم و تحت عنوان مشتقات درجات آزادی گره ها همراه با همگرایی عالی، المان C1* را در مقایسه با المان C0 معادل آن برتر می سازد.
|
|
References
1. Zhu, J. and
Zienkiewicz, O., "Adaptive techniques in the finite element method", Communications
in Applied Numerical Methods,
Vol. 4, No. 2, (1988), 197-204.
2. Zienkiewicz, O.
C., Zhu, J. Z. and Gong, N. G., "Effective and practical h-p conversion
adaptive analysis procedures for the finite element method", International
Journal for Numerical Methods in Engineering, Vol. 28, (1989), 879-891.
3. Tocher, J. L.
and Hartz, B. J., "Higher order finite element for plane stress", J.
Eng. Mech. Div. Proc. ASCE, Vol.
93, (1967), 149-172.
4. William, K. J., Finite element analysis of cellular
structures, in Department of Civil Engineering., University of
California: Berkeley. (1969).
5. YOSHIDA, Y.,
"A hybrid stress element for thin shell analysis", Finite
Element Methods in Engineering, (1974), 271-284.
6. Robinson, J.,
"Four‐node
quadrilateral stress membrane element with rotational stiffness", International
Journal for Numerical Methods in Engineering, Vol. 15, No. 10, (1980), 1567-1569.
7. Macleod, I. A.,
"New rectangular finite element for shear wall analysis", J.
Struct. Div., ASCE, Vol. 95, No.
3, (1969), 399-409.
8. Allman, D.,
"A compatible triangular element including vertex rotations for plane
elasticity analysis", Computers & Structures, Vol. 19, No. 1, (1984), 1-8.
9. Bergan, P. and
Felippa, C., "A triangular membrane element with rotational degrees of
freedom", Computer Methods in Applied Mechanics and Engineering, Vol. 50, No. 1, (1985), 25-69.
10. Bergan,
P. G. and Felippa, C. A., "“Efficient formulation of a triangular
memberane element with drilling freedoms, infinite element methods for plate
and shell structures, (eds) t.R. Hughes and e. Hinton, 1 (element
technology)", pineridge Press International, (1986).
11. Allman,
D., "Evaluation of the constant strain triangle with drilling
rotations", International Journal for Numerical Methods in Engineering, Vol. 26, No. 12, (1988), 2645-2655.
12. Cook,
R. D., "On the allman triangle and a related quadrilateral element", Computers
& Structures, Vol. 22, No.
6, (1986), 1065-1067.
13. Macneal,
R. H. and Harder, R. L., "A refined four-noded membrane element with
rotational degrees of freedom", Computers & Structures, Vol. 28, No. 1, (1988), 75-84.
14. Kelly,
D. W. and Kuruppu, M. D., Development
of new four node plate and eight node hexahedron element with six nodal degrees
of freedom, in Proceeding of the second Asian-pacific conference on
computational mechanics.: Sydney, Australia, (1993). 145-149.
15. Bigdeli,
B., An investigation of
convergence in the finite
element method, New South Wales
University: Australia. (1996).
16. Bigdeli,
B. and Kelly, D. W.,
-convergence and nodal
derivatives in the finite element method, in First Australian Congress on
Applied Mechanics, The Institution on Engineers, Melbourne, Australia. (1996), 571-576.
17. Bigdeli,
B. and Kelly, D. W., "
-convergence in the finite element
method", International Journal for Numerical Methods in Engineering, Vol. 40, (1997), 4405-4425.
18. Stassa,
F. L., "Applied finite element method", Cbs international
editions, (1985).
19. Sharifi
Hamadani, B., The study of the
convergence of
elements in 3-d elasticity (in
persian), in Mechnaical Enginnering Department.,
Bu-Ali Sina University: Hamadan, Iran,. (2001)
20. Irons,
B. M. and Razzaque, A., "Experience with the patch test for convergence of
finite element method, in mathematical foundation of the finite element method
(eds) a.K. Aziz", Academic press,
(1972).
21. Veubeke,
D. and Fraeijs, B., "Variational principles and the patch test", International
Journal for Numerical Methods in Engineering, Vol. 8, No. 4, (1974), 783-801.
22. de
Arantes e Oliveira, E., "The patch test and the general convergence
criteria of the finite element method", International Journal of Solids and
Structures, Vol. 13, No. 3,
(1977), 159-178.
23. Razzaque,
A., "The patch test for elements", International Journal for
Numerical Methods in Engineering,
Vol. 22, No. 1, (1986), 63-71.
24. Rasanoff,
R. A., Gloudeman, J. F. and Levy, S., Numerical
conditioning of stiffness matrix formulations for frame structures, in
Proceeding of the Second Conference on Matrix Method in Structural Mechanics.,
Wright-Patterson AFB: Ohio. (1968), 1029-1060.
25. Smith,
B. F., Domain decomposition algorithms
for the partial differential equations of linear elasticity, in Mathematics
Department., New York University. (1991)
26. Babuška,
I., Craig, A., Mandel, J. and Pitkäranta, J., "Efficient preconditioning
for the p-version finite element method in two dimensions", SIAM
Journal on Numerical Analysis,
Vol. 28, No. 3, (1991), 624-661.
27. Dhatt,
G. and Touzot, G., "Finite element method", John Wiley &
Sons, (2012).
28. Di, S. and Ramm, E., "On alternative hybrid stress 2d
and 3d elements", Engineering Computations, Vol. 11, No. 1, (1994), 49-68.
|
|
|
|
|