Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 26, No. 10 (October 2013) 1213-1224   

downloaded Downloaded: 393   viewed Viewed: 2013

  NUMERICAL INVESTIGATION OF MAGNETIC FIELD EFFECTS ON MIXED CONVECTION FLOW IN A NANOFLUID-FILLED LID-DRIVEN CAVITY
 
J. Rahmannezhad, A. Ramezani and M. Kalteh
 
( Received: December 09, 2012 – Accepted: May 16, 2013 )
 
 

Abstract    In this work, the stencil adaptive method is applied to investigate the effects of a magnetic field on mixed convection of Al2O3-water nanofluid in a square lid-driven cavity. The incompressible Navier-Stokes equations are solved by an adaptive mesh method which has superior numerical advantages compared to the traditional method on the uniform fine grid. The main objective of this study is to investigate the influence of several pertinent parameters such as the Reynolds number, the Hartmann number and the solid particle volume fraction on the heat transfer performance of the nanofluid. Based on the obtained numerical results, the heat transfer rate increases with an increase of the Reynolds number but, it decreases with an increase of the Hartmann number. Also, the results indicate that heat transfer of the nanofluid could be either enhanced or mitigated with respect to that of the base fluid depending on the Reynolds number.

 

Keywords    Mixed convection; Nanofluids; Hartmann number; Reynolds number; Stencil adaptive method

 

چکیده    در این کار، الگوریتم الگوی تطبیقي برای مطالعه اثرات میدان مغناطیسي بر روی انتقال حرارت مختلط نانو سیال آب-اکسید آلومینیوم درون یک حفره مربعي، به کار گرفته شده است. معادلات تراکم ناپذير ناویر-استوکس با به کار گیری یک روش تطبیقي تولید شبکه که برتریهای خوبي نسبت به روشهاي سنتي بر روی شبکه­های یکنواخت ریز دارد، حل شده­اند. هدف اصلي این تحقیق بررسي اثر چندین پارامتر مهم مانند عدد رینولدز، عدد هارتمن و کسر حجمي ذرات جامد بر روی نحوه انتقال حرارت نانوسیال است. بر اساس نتايج عددي حاصله، نرخ انتقال حرارت با بافزایش عدد رینولدز افزایش مي­یابد اما با افزایش عدد هارتمن این نرخ کاهش مي­یابد. همچنین، نتایج نشان مي­دهند که بسته به عدد رینولدز جریان انتقال حرارت نانوسیال نسبت به سیال پایه مي­تواند بهبود یابد یا اینکه دچار کاهش شود.

References   

[if gte mso 9]>

 

1.        Chamkha, A. J., "Hydromagnetic combined convection flow in a vertical lid-driven cavity with internal heat generation or absorption", Numerical Heat Transfer: Part A: Applications,  Vol. 41, No. 5, (2002), 529-546.

2.        Choi, S. U. and Eastman, J., Enhancing thermal conductivity of fluids with nanoparticles., Argonne National Lab., IL United States). 1995)

3.        Jou, R.-Y. and Tzeng, S.-C., "Numerical research of nature convective heat transfer enhancement filled with nanofluids in rectangular enclosures", International Communications in Heat and Mass Transfer,  Vol. 33, No. 6, (2006), 727-736.

4.        Tiwari, R. K. and Das, M. K., "Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids", International Journal of Heat and Mass Transfer,  Vol. 50, No. 9, (2007), 2002-2018.

5.        Talebi, F., Mahmoudi, A. H. and Shahi, M., "Numerical study of mixed convection flows in a square lid-driven cavity utilizing nanofluid", International Communications in Heat and Mass Transfer,  Vol. 37, No. 1, (2010), 79-90.

6.        Nemati, H., Farhadi, M., Sedighi, K., Fattahi, E. and Darzi, A., "Lattice boltzmann simulation of nanofluid in lid-driven cavity", International Communications in Heat and Mass Transfer,  Vol. 37, No. 10, (2010), 1534-1528

7.        Muthtamilselvan, M., Kandaswamy, P. and Lee, J., "Heat transfer enhancement of copper-water nanofluids in a lid-driven enclosure", Communications in Nonlinear Science and Numerical Simulation,  Vol. 15, No. 6, (2010), 1501-1510.

8.        afari, M., Farhadi, M., Sedighi, K. and Fattahi, E., "Effect of wavy wall on convection heat transfer of water-al2o3 nanofluid in a lid-driven cavity using lattice boltzmann method", International Journal of Engineering-Transactions A: Basics,  Vol. 25, No. 2 (2012)1560-1568

9.        Heyhat, M. and Kowsary, F., "Numerical simulation of forced convection of nanofluids by a two-component nonhomogenious model", International Journal of Engineering, Transactions A: Basics,  Vol. 23, No. 1, (2010), 89-99.

10.     M., M., "Magnetohydrodynamics", The Netherlands,  (1990).

11.     Ece, M. C. and BŁyŁk, E., "Natural-convection flow under a magnetic field in an inclined rectangular enclosure heated and cooled on adjacent walls", Fluid Dynamics Research,  Vol. 38, No. 8, (2006), 564-590.

12.     Sivasankaran, S. and Ho, C.-J., "Effect of temperature dependent properties on mhd convection of water near its density maximum in a square cavity", International Journal of Thermal Sciences,  Vol. 47, No. 9, (2008), 1184-1194.

13.     Rahman, M., Alim, M. and Sarker, M., "Numerical study on the conjugate effect of joule heating and magnato-hydrodynamics mixed convection in an obstructed lid-driven square cavity", International Communications in Heat and Mass Transfer,  Vol. 37, No. 5, (2010), 524-534.

14.     Ghasemi, B., Aminossadati, S. and Raisi, A., "Magnetic field effect on natural convection in a nanofluid-filled square enclosure", International Journal of Thermal Sciences,  Vol. 50, No. 9, (2011), 1748-1756.

15.     Aminossadati, S., Raisi, A. and Ghasemi, B., "Effects of magnetic field on nanofluid forced convection in a partially heated microchannel", International Journal of Non-Linear Mechanics,  Vol. 46, No. 10, (2011), 1373-1382.

16.     Ding, H. and Shu, C., "A stencil adaptive algorithm for finite difference solution of incompressible viscous flows", Journal of Computational Physics,  Vol. 214, No. 1, (2006), 397-420.

17.     "Http://www.Matweb.Com/, in.", 

18.     Xuan, Y. and Roetzel, W., "Conceptions for heat transfer correlation of nanofluids", International Journal of Heat and Mass Transfer,  Vol. 43, No. 19, (2000), 3701-3707.

19.     Khanafer, K. and Vafai, K., "A critical synthesis of thermophysical characteristics of nanofluids", International Journal of Heat and Mass Transfer,  Vol. 54, No. 19, (2011), 4428-44100,

20.     Corcione, M., "Empirical correlating equations for predicting the effective thermal conductivity and dynamic viscosity of nanofluids", Energy Conversion and Management,  Vol. 52, No. 1, (2011), 789-793.

Nemati, H., Farhadi, M., Sedighi, K., Ashorynejad, H. and Fattahi, E., "Magnetic field effects on natural convection flow of nanofluid in a rectangular cavity using the lattice boltzmann model", Scientia Iranica,  Vol. 19, No. 2, (2012), 303-310.  





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir