Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 26, No. 10 (October 2013) 1255-1266   

downloaded Downloaded: 406   viewed Viewed: 2037

  OPTIMIZATION OF LOW PRESSURE VORTEX TUBE VIA DIFFERENT AXIAL ANGLES OF INJECTION NOZZLES
 
N. Pourmahmoud, A. Jahangiramini and A. Izadi
 
( Received: April 09, 2013 – Accepted: June 20, 2013 )
 
 

Abstract    In this article, a Ranque–Hilsch Vortex Tube has been optimized utilizing axial angles for nozzles. Effect of nozzles angles on the flow behavior has been investigated by computational fluid dynamics (CFD) techniques. A finite volume approach with the standard k–ε turbulence model has been used to carry out all the computations. The dimensions of studied vortex tubes are kept the same for all models and the performance of machine is studied under 5 different angles (β) including 0, 2, 4, 6 and 8 degree adjusted to the nozzles. Achieving to a minimum cold exit temperature is the main goal of this numerical research. The results show that utilizing this kind of nozzle improves the cooling capacity of device for most of inlet mass flow rates. Finally, some results of the CFD models are validated by the available experimental data which show reasonable agreement, and other ones are compared qualitatively.

 

Keywords    Vortex tube, Numerical simulation, axial angle, Energy separation, Total pressure

 

چکیده    در اين مقاله زاويه محوري نازل‌هاي تزريق دستگاه ورتکس تيوب رانک-هيلش بهينه سازی شده است. بررسی تأثير زاويه نازل‌هاي تزريق بر رفتار جريان در ورتكس تيوب با استفاده از تكنيك ديناميك سيالات محاسباتي، صورت گرفته و برای انجام تمام محاسبات از روش حجم محدود با مدل توربولانس استانداردk-ε استفاده شده است. ابعاد ورتكس تيوب‌هاي مدل‌شده براي تمام مدل‌ها يكسان بوده و عملكرد دستگاه تحت 5 زاويه محوري مختلف شامل زوايای 0، 2، 4، 6 و 8 درجه براي نازل‌ها مورد بررسی قرار گرفته است. رسيدن به حداقل دماي ممكن در خروجي سرد هدف اصلي اين تحقيق عددي است. بررسي ما نشان مي‌دهد كه استفاده از اين نوع نازل، ظرفيت سرمايشی دستگاه را برای اکثر نرخ­های جريان جرمی بهبود مي­بخشد. در نهايت برخي از نتايج حاصل از كار عددي با نتايج تجربي در دست مقايسه شده‌اند كه تطابق قابل قبولي بين آنها وجود دارد.

References   

 

1.     Hilsch, R., "Die expansion von gasen in zentrifugalfeld als kälteprozess", Zeitschrift Naturforschung Teil A,  Vol. 1, (1946), 208.

2.     Shamsoddini, R. and Nezhad, A. H., "Numerical analysis of the effects of nozzles number on the flow and power of cooling of a vortex tube", International Journal of Refrigeration,  Vol. 33, No. 4, (2010), 774-782.

3.     Aydın, O. and Baki, M., "An experimental study on the design parameters of a counterflow vortex tube", Energy,  Vol. 31, No. 14, (2006), 2763-2772.

4.     Aljuwayhel, N., Nellis, G. and Klein, S., "Parametric and internal study of the vortex tube using a CFD model", International Journal of Refrigeration,  Vol. 28, No. 3, (2005), 442-450.

5.     Skye, H., Nellis, G. and Klein, S., "Comparison of cfd analysis to empirical data in a commercial vortex tube", International Journal of Refrigeration,  Vol. 29, No. 1, (2006), 71-80.

6.     Promvonge, P., "Numerical simulation of turbulent compressible vortex tube flow", Sanfrancisco, USA, ASME/JSME Joint Fluid Engineering,  (1999).

7.     Behera, U., Paul, P., Kasthurirengan, S., Karunanithi, R., Ram, S., Dinesh, K., and Jacob, S., "CFD analysis and experimental investigations towards optimizing the parameters of ranque–hilsch vortex tube", International Journal of Heat and Mass Transfer,  Vol. 48, No. 10, (2005), 1961-1973.

8.     Pourmahmoud, N., Zadeh, H. A., Moutaby, O. and Bramo, A., "CFD analysis of helical nozzles effects on the energy separation in a vortex tube", Thermal Science,  Vol. 16, No. 1, (2012), 151-166.

9.     Pourmahmoud, N., Hassanzadeh, A. and Moutaby, O., "Numerical analysis of the effect of helical nozzles gap on the cooling capacity of ranque–hilsch vortex tube", International Journal of Refrigeration,  Vol. 35, No. 5, (2012), 1473-1483.

10.   Pourmahmoud, N., Izadi, A., Hassanzadeh, A. and Jahangiramini, A., "Computational fluid dynamics analysis of the influence of injection nozzle lateral outflow on the performance of ranque-hilsch vortex tube", Thermal Science, (2013), 2-2.

11.   Takahama, H., "Studies on vortex tubes:(1) experiments on efficiency of energy separation:(2) on profiles of velocity and temperature", Bulletin of JSME,  Vol. 8, No. 31, (1965), 433-440.

12.   Marshall, J., "Effect of operating conditions, physical size and fluid characteristics on the gas separation performance of a linderstrom-lang vortex tube", International Journal of Heat and Mass Transfer,  Vol. 20, No. 3, (1977), 227-231.

13.   Saidi, M. and Valipour, M., "Experimental modeling of vortex tube refrigerator", Applied Thermal Engineering,  Vol. 23, No. 15, (2003), 1971-1980.

14.   Ahlborn, B. and Groves, S., "Secondary flow in a vortex tube", Fluid Dynamics Research,  Vol. 21, No. 2, (1997), 73-86.

15.   Dincer, K., Tasdemir, S., Baskaya, S. and Uysal, B., "Modeling of the effects of length to diameter ratio and nozzle number on the performance of counterflow ranque–hilsch vortex tubes using artificial neural networks", Applied Thermal Engineering,  Vol. 28, No. 17, (2008), 2380-2390.

16.   Kirmaci, V. and Uluer, O., "An experimental investigation of the cold mass fraction, nozzle number, and inlet pressure effects on performance of counter flow vortex tube", Journal of Heat Transfer,  Vol. 131, No. 8, (2009).

17.   Chang, K., Li, Q., Zhou, G. and Li, Q., "Experimental investigation of vortex tube refrigerator with a divergent hot tube", International Journal of Refrigeration,  Vol. 34, No. 1, (2011), 322-327.

18.   Valipour, M. S. and Niazi, N., "Experimental modeling of a curved ranque–hilsch vortex tube refrigerator", International Journal of Refrigeration,  Vol. 34, No. 4, (2011), 1109-1116.

19.   Wu, Y., Ding, Y., Ji, Y., Ma, C. and Ge, M., "Modification and experimental research on vortex tube", International Journal of Refrigeration,  Vol. 30, No. 6, (2007), 1042-1049.

20.   Dincer, K., Baskaya, S., Uysal, B. and Ucgul, I., "Experimental investigation of the performance of a ranque–hilsch vortex tube with regard to a plug located at the hot outlet", International Journal of Refrigeration,  Vol. 32, No. 1, (2009), 87-94.

21.   Pinar, A. M., Uluer, O. and Kırmaci, V., "Optimization of counter flow ranque–hilsch vortex tube performance using taguchi method", International Journal of Refrigeration,  Vol. 32, No. 6, (2009), 1487-1494.

22.           Bramo, A. R. and Pourmahmoud, N., "Computational fluid dynamics simulation of length to diameter ratio effects on the energy separation in a vortex tube", Thermal Science,  Vol. 15, No. 3, (2011), 833-848.  





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir