Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 26, No. 11 (November 2013) 1275-1280   

downloaded Downloaded: 98   viewed Viewed: 1675

  THE EFFECTS OF EXCITATION SIGNAL ON THE RESOLUTION OF THE LIQUID CRYSTAL CAPACITIVE CHEMICAL AND BIOLOGICAL SENSORS
 
A. Hassanzadeh, Y. Zou and R. G. Lindquist
 
( Received: December 31, 2012 – Accepted: February 28, 2013 )
 
 

Abstract    In this paper excitation characteristics of the Liquid Crystal (LC) capacitive chemical and biological sensor are examined and the optimum frequency and voltage range for the sensor interface are introduced. Interdigitated capacitor has been used for the sensor capacitance measurement and two different molecular orientations, homeotropic and homogenous, have been considered. The LC sensor capacitance has been measured for different frequencies from 20Hz to 2MHz and voltages from 0/5V to 20V. In both cases, the effects of excitation on the capacitance value and the accuracy of the measurement are investigated. Simulation and experimental results support the proposed range of measurement.

 

Keywords    Liquid Crystal Capacitive Sensor, Liquid Crystal excitation, Interdigitated Capacitor.

 

چکیده    در این مقاله مشخصات سیگنال تحریک سنسورهای خازنی برای اشکارسازی مواد بیولوژیکی و شیمیایی مورد بررسی قرار گرفته و فرکانس و ولتاژ بهینه برای تحریک سنسور بدست آمده است. از خازن شانه ای برای اندازه گیری سنسور خازنی در دو ساختار هموژن و هوموتراپیک استفاده شده است. خازن سنسور برای رنج فرکانسی 20هرتز تا 2 مگا هرتز و ولتاژهای 5/0 ولت تا 20 ولت اندازه گیری شده است. در هر دو حالت اثر سیگنال تحریک روی مقدار خازن و دقت اندازه گیری مورد بررسی قرار گرفته اند. نتایج شبیه سازی و اندازه گیری های آزمایشگاهی رنج بهینه سیگنال تحریک بدست آمده را تایید میکند.

References   

1.     Shah, R. R. and Abbott, N. L., "Principles for measurement of chemical exposure based on recognition-driven anchoring transitions in liquid crystals", Science,  Vol. 293, No. 5533, (2001), 1296-1299.

2.     Brake, J. M., Daschner, M. K., Luk, Y.-Y. and Abbott, N. L., "Biomolecular interactions at phospholipid-decorated surfaces of liquid crystals", Science,  Vol. 302, No. 5653, (2003), 2094-2097.

3.     Gupta, V. K., Skaife, J. J., Dubrovsky, T. B. and Abbott, N. L., "Optical amplification of ligand-receptor binding using liquid crystals", Science,  Vol. 279, No. 5359, (1998), 2077-2080.

4.     Van Nelson, J. A., Kim, S.-R. and Abbott, N. L., "Amplification of specific binding events between biological species using lyotropic liquid crystals", Langmuir,  Vol. 18, No. 13, (2002), 5031-5035.

5.     Skaife, J. J. and Abbott, N. L., "Quantitative interpretation of the optical textures of liquid crystals caused by specific binding of immunoglobulins to surface-bound antigens", Langmuir,  Vol. 16, No. 7, (2000), 3529-3536.

6.     Abu-Abed, A., Lindquist, R. G. and Choi, W.-H., "Capacitive transduction for liquid crystal-based sensors, part I: Ordered system", Sensors Journal, IEEE,  Vol. 7, No. 12, (2007), 1617-1624.

7.     Abu-Abed, A. S. and Lindquist, R. G., "Capacitive transduction for liquid crystal based sensors, part II: Partially disordered system", Sensors Journal, IEEE,  Vol. 8, No. 9, (2008), 1557-1564.

8.     Hassanzadeh, A. and Lindquist, R. G., "Liquid crystal sensor microchip", Sensors Journal, IEEE,  Vol. 12, No. 5, (2012), 1536-1544.

9.     Namkung, J., Zou, Y., Abu-Abed, A. and Lindquist, R. G., "Capacitive techniques to monitor of anchoring energy for liquid crystal sensors", Sensors Journal, IEEE,  Vol. 10, No. 9, (2010), 1479-1485.

10.   Hassanzadeh, A. and Lindquist, R. G., "Capacitance calculation for anisotropic medium of liquid crystal chemical and biological sensor", in Southeastcon, Proceedings of IEEE, (2011), 327-330.

11.   Lev, B., Sergienko, V., Tomchuk, P. and Frolova, E., "Nematic liquid crystals in frequency and amplitude modulated electric fields", Liquid Crystals,  Vol. 28, No. 7, (2001), 973-982.

12.   Blinov, L. M., "Structure and properties of liquid crystals", Springer,  Vol. 123,  (2011).

13.   Golovin, A. B., "Introduction to dielectric measurements of nematic liquid crystals", (2010)

14.   Stewart, I. W., "The static and dynamic continuum theory of liquid crystals: A mathematical introduction", CRC Press,  (2004).

15.   Berreman, D. W., "Numerical modelling of twisted nematic devices", Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences,  Vol. 309, No. 1507, (1983), 203-216.

16.           Ge, Z., Wu, T. X., Lu, R., Zhu, X., Hong, Q., and Wu, S.-T., "Comprehensive three-dimensional dynamic modeling of liquid crystal devices using finite element method", Journal of Display Technology,  Vol. 1, No. 2, (2005), 194. 





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir