IJE TRANSACTIONS B: Applications Vol. 26, No. 11 (November 2013) 1299-1306   

downloaded Downloaded: 268   viewed Viewed: 1964

R. Gholipour, A. Khosravi and H. Mojallali
( Received: October 07, 2012 – Accepted in Revised Form: February 28, 2013 )

Abstract    The nonlinear behavior analysis and chaos control for Duffing-Holmes chaotic system is discussed in the paper. In order to suppress the irregular chaotic motion, an optimal backstepping controller is designed. The backstepping method consists of parameters with positive values. The improper selection of the parameters leads to inappropriate responses or even may lead to instability of the system. In this paper, the Unified particle swarm optimization (UPSO) algorithm is utilized to determine the convenient and optimal values of the parameters. The minimized objective function via UPSO algorithm is a weighted sum of the Integral of Time multiplied Absolute Error (ITAE) and squared control signal. Fast control of chaos in a very short time and having more limited control signal for this purpose, are the great advantages of the proposed controller. Numerical simulations show the high performance of this method for chaos elimination in Duffing-Holmes system.


Keywords    Duffing-Holmes system, control of chaos, backstepping controller, UPSO algorithm


چکیده    چكيده آنالیز رفتار غیر خطی و کنترلِ آشوب برای سیستم آشوبی دافینگ-هولمس، در مقاله بحث شده است. برای فرو نشاندن (حذف) حرکت آشوبی نا منظم، یک کنترل کننده پسگام بهینه طراحی می شود. روش پسگام شامل پارامترهایی با مقادیر مثبت است. انتخاب نا مناسب پارامترها منجر به پاسخ های نا مناسب یا حتی ممکن است منجر به ناپایداری سیستم شود. در این مقاله، الگوریتم بهینه سازی اجتماع ذرات یکپارچه، برای تعیین مقادیر مناسب و بهینه ی پارامترها استفاده می شود. تابع هدف مینیمم شده توسط الگوریتم بهینه سازی اجتماع ذرات یکپارچه، یک مجموع وزنی از انتگرال زمان ضربدر قدر مطلق خطا و مربع سیگنال کنترلی است. کنترل سریع آشوب در یک زمان خیلی کوتاه و داشتن سیگنال کنترلی محدود برای این کار از مزیت های بزرگ کنترل کننده پیشنهادی هستند. شبیه سازیهای عددی کارامدی بالای این روش را برای حذفِ آشوب در سیستم دافینگ- هولمس نشان می دهند.



1.     Chen, G., "Controlling chaos and bifuractions in engineering systems", CRC press,  (2000).

2.     Ott, E., Grebogi, C. and Yorke, J. A., "Controlling chaos", Physical review letters,  Vol. 64, No. 11, (1990), 1196.

3.     Jiang, W., Guo-Dong, Q. and Bin, D., "H∞ variable universe adaptive fuzzy control for chaotic system", Chaos, Solitons & Fractals,  Vol. 24, No. 4, (2005), 1075-1086.

4.     Hua, C., Guan, X. and Shi, P., "Adaptive feedback control for a class of chaotic systems", Chaos, Solitons & Fractals,  Vol. 23, No. 3, (2005), 757-765.

5.     Guo, H., Lin, S. and Liu, J., "A radial basis function sliding mode controller for chaotic lorenz system", Physics Letters A,  Vol. 351, No. 4, (2006), 257-261.

6.     Lu, J. and Zhang, S., "Controlling chen's chaotic attractor using backstepping design based on parameters identification", Physics Letters A,  Vol. 286, No. 2, (2001), 148-152.

7.     Park, J. H., "Synchronization of genesio chaotic system via backstepping approach", Chaos, Solitons & Fractals,  Vol. 27, No. 5, (2006), 1369-1375.

8.     Bowong, S. and Moukam Kakmen, F., "Chaos control of uncertain chaotic systems via backstepping approach", Journal of Vibration and Acoustics,  Vol. 128, No. 1, (2006), 21-27.

9.     Yassen, M., "Chaos control of chaotic dynamical systems using backstepping design", Chaos, Solitons & Fractals,  Vol. 27, No. 2, (2006), 537-548.

10.   Chen, F., Chen, L. and Zhang, W., "Stabilization of parameters perturbation chaotic system via adaptive backstepping technique", Applied Mathematics and Computation,  Vol. 200, No. 1, (2008), 101-109.

11.   Wu, Z.-J., Xie, X.-J., Shi, P. and Xia, Y.-q., "Backstepping controller design for a class of stochastic nonlinear systems with markovian switching", Automatica,  Vol. 45, No. 4, (2009), 997-1004.

12.   Ma, R. and Zhao, J., "Backstepping design for global stabilization of switched nonlinear systems in lower triangular form under arbitrary switchings", Automatica,  Vol. 46, No. 11, (2010), 1819-1823.

13.   Shi, H., "A novel scheme for the design of backstepping control for a class of nonlinear systems", Applied Mathematical Modelling,  Vol. 35, No. 4, (2011), 1893-1903.

14.   Hu, Q., Xu, L. and Zhang, A., "Adaptive backstepping trajectory tracking control of robot manipulator", Journal of the Franklin Institute,  Vol. 349, No. 3, (2012), 1087-1105.

15.   Eberhart, R. and Kennedy, J., "A new optimizer using particle swarm theory", in Micro Machine and Human Science, MHS'95., Proceedings of the Sixth International Symposium on, IEEE, (1995), 39-43.

16.   Parsopoulos, K. E. and Vrahatis, M. N., "Parameter selection and adaptation in unified particle swarm optimization", Mathematical and Computer Modelling,  Vol. 46, No. 1, (2007), 198-213.

17.   Clerc, M. and Kennedy, J., "The particle swarm-explosion, stability, and convergence in a multidimensional complex space", Evolutionary Computation, IEEE Transactions on,  Vol. 6, No. 1, (2002), 58-73.

18.   Pan, I., Das, S. and Gupta, A., "Tuning of an optimal fuzzy pid controller with stochastic algorithms for networked control systems with random time delay", ISA Transactions,  Vol. 50, No. 1, (2011), 28-36.

19.           Yan, J.-J., "Design of robust controllers for uncertain chaotic systems with nonlinear inputs", Chaos, Solitons & Fractals,  Vol. 19, No. 3, (2004), 541-547. 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir