IJE TRANSACTIONS B: Applications Vol. 26, No. 11 (November 2013) 1385-1392   

downloaded Downloaded: 321   viewed Viewed: 1822

H. Bagheri Tolabi, M. H. Moradi and F. Bagheri Tolabi
( Received: February 09, 2013 – Accepted in Revised Form: April 18, 2013 )

Abstract    Estimation of solar radiation is the most important parameter for various solar energy systems. Expensive devices are required to achieve the amount of solar radiation for a special region, therefore different models have been proposed by researchers to estimate the solar radiation that obviate using such devices. Nonlinear nature and excessive dependence on the meteorological parameters of these models, caused the researchers look for quickly and efficiently methods to solve them and find solar radiation for a specific region. In this paper, a new method based on the Angstrom model is introduced to estimate the monthly average daily global solar radiation on a horizontal surface by Bees Algorithm as a heuristic and population-based search technique implemented in MATLAB software. The experimental coefficients for Angstrom model are calculated for six different climate regions of Iran using proposed program written in the software environment. The comparison between results obtained from the proposed method and other techniques proves the efficiency and predominance of the new method to find the more accurate amount of solar radiation.


Keywords    Bees Algorithm, Global solar radiation, Experimental coefficients, Statistical regression techniques, Intelligent techniques


چکیده    برآورد میزان تابش خورشید مهم ترین پارامتر جهت طراحی انواع مختلف سیستم های خورشیدی است. جهت حصول مقدار دقیق تابش خورشیدی در یک منطقه خاص تجهیزات گرانی قیمت مورد نیاز است که تامین آن ها در تعداد اندکی از ایستگاه های سینوپتیک امکان پذیر است. در این راستا، مدل های مختلفی به منظور برآورد تابش خورشیدی توسط محققان پیشنهاد شده اند که لزوم بهره مندی از چنین دستگاه هایی را مرتفع می سازند. ماهیت غیرخطی، پیچده و وابستگی این مدل ها به پارامترهای مختلف هواشناسی یک منطقه جغرافیایی، محققان را بر آن داشته است که به دنبال راهکارهایی با دقت و سرعت بالا جهت حل این مدل ها و در نهایت، یافتن مقدار تابش برای هر منطقه خاص باشند. در این مقاله، یک روش جدید بر مبنای مدل انگسترم، با کمک الگوریتم جدید زنبورها، به عنوان یک الگوریتم اکتشافی و جستجوگر مبتنی بر جمعیت به منظور برآورد تابش کلی متوسط روزانه در ماه بر روی سطح افقی زمین معرفی شده است. ضرایب تجربی مدل آنگستروم برای شش منطقه آب و هوایی مختلف ایران با استفاده از برنامه پیشنهادی نوشته شده در محیط نرم افزارMATLAB ، محاسبه شده اند. مقایسه بین نتایج به دست آمده از روش پیشنهادی و روش های دیگر، برتری و کارایی بالای تکنیک جدید پیشنهادی را جهت تخمین تابش خورشیدی ثابت می کند.


5.     Chen, R., Ersi, K., Yang, J., Lu, S. and Zhao, W., "Validation of five global radiation models with measured daily data in china", Energy Conversion and Management,  Vol. 45, No. 11, (2004), 1759-1769.

6.     Almorox, J., "Estimating global solar radiation from common meteorological data in aranjuez, spain", Turkish Journal of Physics,  Vol. 35, No., (2011), 53-64.

7.     Angstrom, A., "Solar and terrestrial radiation. Report to the international commission for solar research on actinometric investigations of solar and atmospheric radiation", Quarterly Journal of the Royal Meteorological Society,  Vol. 50, No. 210, (1924), 121-126.

8.     Prescott, J., "Evaporation from a water surface in relation to solar radiation", Transactions of the Royal Society of South Australia,  Vol. 64, No. 1940, (1940), 114-118.

9.     Page, J. K., "The estimation of monthly mean values of daily total short wave radiation on vertical and inclined surfaces from sunshine records for latitudes 400 n -40 0s, in Proceedings of UN Conference on new sources of  energy", (1961), 378-390.

10.   Bahel, V., Bakhsh, H. and Srinivasan, R., "A correlation for estimation of global solar radiation", Energy,  Vol. 12, No. 2, (1987), 131-135.

11.   Yeboah-Amankwah, D. and Agyeman, K., "Differential Ångstrom model for predicting insolation from hours of sunshine", Solar Energy,  Vol. 45, No. 6, (1990), 371-377.

12.   Ninomiya, H., "Study on application of amedas meteorological data to the simulation of building heat environment", , University of Tokyo. (1994)

13.   Burari, F., Sambo, A. and Mshelia, E., "Estimation of global solar radiation in bauchi", Nigerian Journey of Renewable Energy,  Vol. 9, (2001), 34-36.

14.   Aggarwal, R. and Pandey, A., "New correlation to estimate global solar radiation on horizontal surfaces using sunshine hour and temperature data for indian sites", Journal of Solar Energy Engineering,  Vol. 127, (2005), 417.

15.   Trabea, A. and Shaltout, M., "Correlation of global solar radiation with meteorological parameters over Egypt", Renewable Energy,  Vol. 21, No. 2, (2000), 297-308.

16.   Ojosu, J. and Komolafe, L., "Models for estimating solar radiation availability in south western Nigeria", Nigerian Journal of Solar Energy,  Vol. 16, No., (1987), 69-77.

17.   Garg, H. and Garg, S., "Prediction of global solar radiation from bright sunshine hours and other meteorological parameters", in Solar-India, Proceedings of the National Solar Energy Convention, Allied Publishers, New Delhi, (1982), 1.004-1.007.

18.   Zabara, K., "Estimation of the global solar radiation in Greece", Solar & Wind Technology,  Vol. 3, No. 4, (1986), 267-272.

19.   Samuel, T., "Estimation of global radiation for Sri Lanka", Solar Energy,  Vol. 47, No. 5, (1991), 333-337.

20.   Newland, F., "A study of solar radiation models for the coastal region of south China", Solar Energy,  Vol. 43, No. 4, (1989), 227-235.

21.   Yazdanpanah, H., Mirmojarabian, R. and Barghi, H., "Estimation of solar global radiation on horizontal surface in isfahan", Journal of Geography and Environmental Planning (Persian),  Vol. 37, No., (2010), 95-104.

22.   Sivamadhavi, V. and Selvaraj, R. S., "Robust regression technique to estimate the global radiation", Indian Journal of Radio & Space Physics,  Vol. 41, No. 1, (2012), 17-25.

23.   Mellit, A., Menghanem, M. and Bendekhis, M., "Artificial neural network model for prediction solar radiation data: Application for sizing stand-alone photovoltaic power system", in Power Engineering Society General Meeting, IEEE, (2005), 40-44.

24.   Iqdour, R. and Zeroual, A., "A rule based fuzzy model for the prediction of solar radiation", Revue Des Energies Renouvelables,  Vol. 9, No. 2, (2006), 113-120.

25.   Wang, J., Xie, Y., Zhu, C. and Xu, X., "Daily solar radiation prediction based on genetic algorithm optimization of wavelet neural network", in Electrical and Control Engineering (ICECE), International Conference on, IEEE. (2011), 602-605.

26.   Behrang, M., Assareh, E., Noghrehabadi, A. and Ghanbarzadeh, A., "New sunshine-based models for predicting global solar radiation using pso (particle swarm optimization) technique", Energy,  Vol. 36, No. 5, (2011), 3036-3049.

27.   Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., and Zaidi, M., "The bees algorithm. Technical note", Manufacturing Engineering Centre, Cardiff University, UK, (2005), 1-57.

28.   Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S., and Zaidi, M., "The bees algorithm–a novel tool for complex optimisation problems", in Proceedings of the 2nd Virtual International Conference on Intelligent Production Machines and Systems (IPROMS). (2006), 454-459.

29.   Seeley, T., The wisdom of the hive: The social physiology of honey bee colonies, Harvard University Press, Cambridge MA. (1996)

30.   Alfi, A. and Khosravi, A., "Constrained nonlinear optimal control via a hybrid BA-SD", International Journal of Engineering,  Vol. 25, No. 3, (2012), 197-204.

31.   Gholipoura, R., Khosravia, A. and Mojallali, H., "Parameter estimation of loranz chaotic dynamic system using bees algorithm", International Journal of Engineering-Transactions C: Aspects,  Vol. 26, No. 3, (2012), 257.

32.           Spencer, J., "Fourier series representation of the position of the sun", Search,  Vol. 2, No. 5, (1971), 172. 

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir