Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 26, No. 11 (November 2013) 1267-1274   

downloaded Downloaded: 315   viewed Viewed: 1887

  IMAGE ENHANCEMENT VIA REDUCING IMPAIRMENT EFFECTS ON IMAGE COMPONENTS
 
H. Hassanpour and A. Rostami Ghadi
 
( Received: January 13, 2013 – Accepted: February 28, 2013 )
 
 

Abstract    In this paper, a new approach is presented for improving image quality. It provides a new outlook on how to apply the enhancment methods on images. Image enhancement techniques may deal with the illumination, resolution, or distribution of pixels values. Issues such as the illumination of the scene and reflectance of objects affect on image captures. Generally, the pixels value of an image is proportional to the illumination of point in the scene and the reflectance of the object. Indeed, the captured image is the results of illumination and reflectance of the object. Hence, impairment the image may be due to each of the illumination or reflectance component. In this paper it is shown that various types of impairments have different effects on the illumination and reflectance of image components. Studies show that impairment effect on an image depending on the type of the impairment on one component is more to another component. Unlike conventional methods which do enhancement process on the original image for any type of impairment, in this paper it is to reduce the impairement effects from image components. Results of this research show that image enhancement based on the proposed method has better results comparing to applying enhancement methods on original image.

 

Keywords    Image Enhancement, Image component, illumination, reflectance

 

چکیده   

در این مقاله پیشنهاد جدیدی برای بهبود کیفیت تصویر ارائه شده است که در آن نگرش جدیدی در مورد چگونگی اعمال روش­های بهسازی مطرح شده است. عملیات بهسازی تصویر ممکن است بر اساس روشنایی، وضوح و یا توزیع سطوح خاکستری انجام شود. هنگام تصویربرداری ویژگی­هایی مانند شدت روشنایی صحنه و قابلیت بازتاب اجسام بر تصویری که بدست می­آید، تاثیر می­گذارند. بطور کلی، پیکسل­های یک تصویر به گونه­ای مقدار می­گیرند که متناسب با شدت روشنایی نقطه مربوط در صحنه و قابلیت بازتابش آن نقطه از جسم می­باشند. درواقع، تصویر بدست آمده نتیجه­ی شدت روشنایی و قابلیت بازتابش اشیاء است. بر این اساس خرابی یک تصویر ممکن است ناشی از هریک از مولفه­های شدت روشنایی و یا قابلیت انعکاسی باشند. در این مقاله نشان داده می­شود که انواع مختلف خرابی تصویر، روی مولفه­ شدت روشنایی و مولفه بازتابش تصویر تاثیر متفاوتی می­گذارند. بررسی­ها نشان می­دهند که تاثیر خرابی بر روی یک تصویر بسته به نوع خرابی روی یک مولفه­­ نسبت به مولفه­ی دیگر متفاوت می­باشد. برخلاف روشهای معمول که به ازای هر نوع خرابی، فرایند بهسازی و اصلاح را روی تصویر اصلی انجام می­دهند، در این مقاله پیشنهاد می­شود تاثیر خرابی را از مولفه­های تصویر کاهش دهند. نتایج این تحقیق نشان می­دهد که بهسازی تصویر بر مبنای روش پیشنهادی، نتایج بهتری در مقایسه با اعمال روش­های بهسازی بر روی تصویر اصلی دارد

References   

1.     Shi, Y., Yang, J. and Wu, R., "Reducing illumination based on nonlinear gamma correction", in Image Processing, ICIP,  IEEE International Conference on, IEEE. Vol. 1, (2007), I-529-I-532.

2.     Naderi, s., Moghadam Charkari, N. and kabir, E., "Local improvement of the quality of the face images with strong shadows, in order to improve the detection", Signal and Data Processing Journal,  Vol. 1, (2011), 55-66.

3.     Ye, Q., Xiang, M. and Cui, Z., "Fingerprint image enhancement algorithm based on two dimension emd and gabor filter", Procedia Engineering,  Vol. 29, (2012), 1840-1844.

4.     Saeed, A., Tariq, A. and Jawaid, U., "Automated system for fingerprint image enhancement using improved segmentation and gabor wavelets", in Information and Communication Technologies (ICICT), International Conference on, IEEE. (2011), 1-6.

5.     Gorgel, P., Sertbas, A. and Ucan, O. N., "A wavelet-based mammographic image denoising and enhancement with homomorphic filtering", Journal of Medical Systems,  Vol. 34, No. 6, (2010), 993-1002.

6.     Shao, M. and Wang, Y.-H., "Extracting intrinsic images from multi-spectral", in Wavelet Analysis and Pattern Recognition,. ICWAPR International Conference on, IEEE. (2009), 241-246.

7.     Acharya, A., Mehra, R. and singh Takher, V., "FPGA based non uniform illumination correction in image processing applications", Image Processing Applications,  Vol. 2, No. 2, (2011), 349-358.

8.     Rasheed, T., Ahmed, B., Khan, M. A., Bettayeb, M., Lee, S., and Kim, T.-S., "Rib suppression in frontal chest radiographs: A blind source separation approach", in Signal Processing and Its Applications, ISSPA 9th International Symposium on, IEEE. (2007), 1-4.

9.     Fan, C.-N. and Zhang, F.-Y., "Homomorphic filtering based illumination normalization method for face recognition", Pattern Recognition Letters,  Vol. 32, No. 10, (2011), 1468-1479.

10.   Xie, X., Lai, J. and Zheng, W.-S., "Extraction of illumination invariant facial features from a single image using nonsubsampled contourlet transform", Pattern Recognition,  Vol. 43, No. 12, (2010), 4177-4189.

11.   Ngo, H. T., Asari, V. K., Zhang, M. Z. and Tao, L., "Design of a systolic-pipelined architecture for real-time enhancement of color video stream based on an illuminance–reflectance model", Integration, the VLSI Journal,  Vol. 41, No. 4, (2008), 474-488.

12.   Jie, X., Li-na, H., Guo-hua, G. and Ming-quan, Z., "Real color image enhanced by illumination-reflectance model and wavelet transformation", in Information Technology and Computer Science, ITCS. International Conference on, IEEE. Vol. 1, (2009), 351-356.

13.   Tappen, M. F., Freeman, W. T. and Adelson, E. H., "Recovering intrinsic images from a single image", Pattern Analysis and Machine Intelligence, IEEE Transactions on,  Vol. 27, No. 9, (2005), 1459-1472.

14.   Zhichao, L. and Joo, E. M., "Face recognition under varying illumination", New Trends in Technologies: Control, Management, Computational Intelligence and Network Systems, InTech, Rijeka,  (2010).

15.   Han, H., Shan, S., Chen, X. and Gao, W., "Illumination transfer using homomorphic wavelet filtering and its application to light-insensitive face recognition", IEEE Automatic Face & Gesture Recognition, (2008), 1-6.

16.   Liu, Z., Yang, J. and Liu, C., "Extracting multiple features in the cid color space for face recognition", Image Processing, IEEE Transactions on,  Vol. 19, No. 9, (2010), 2502-2509.

17.   Hassanpour, H. and Asadi, S., "Image quality enhancement using pixel wise gamma correction", International Journal of Engineering-Transactions B: Applications,  Vol. 24, No. 4, (2011), 301.

18.           McAndrew, A., "An introduction to digital image processing with matlab notes for scm2511 image processing", School of Computer Science and Mathematics, Victoria University of Technology,  (2004), 1-264. 





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir