Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 27, No. 1 (January 2014) 15-28   

downloaded Downloaded: 261   viewed Viewed: 2131

  IMAGE ZOOMING USING NON-LINEAR PARTIAL DIFFERENTIAL EQUATION
 
N. Nowrozian and H. Hassanpour
 
( Received: June 18, 2013 – Accepted: August 22, 2013 )
 
 

Abstract    The main issue in any image zooming techniques is to preserve the structure of the zoomed image. The zoomed image may suffer from the discontinuities in the soft regions and edges; it may contain artifacts, such as image blurring and blocky, and staircase effects. This paper presents a novel image zooming technique using Partial Differential Equations (PDEs). It combines a non-linear Fourth-order PDE method with the Locally Adaptive Zooming (LAZ) algorithm. The proposed method uses high-resolution image obtained from LAZ algorithm to construct zoomed image by Fourth-order PDE. This proposed method preserves edges and minimizes blurring and staircase effects in the zoomed image. In order to evaluate image quality obtained from the proposed method, this paper focuses on both subjective and objective assessments. The results of these measures on a variety of images show that the proposed method is superior over the other image zooming methods.

 

Keywords    Image zooming, Partial Differential Equations (PDEs), nonlinear fourth-order PDE, locally adaptive zooming algorithm (LAZ), Unsharp masking

 

چکیده    مسئله اصلی در هر تکنولوژی بزرگنمایی تصویر حفظ ساختار تصویر بزرگنمایی شده است. این مقاله یک روش جدید بزرگنمایی تصویر با استفاده از معادله مشتقات جزئی را ارائه می دهد. روش پیشنهادی، ترکیبی از الگوریتم حذف نویز بر اساس معادلات مشتقات مرتبه چهارم با الگوریتم LAZ می باشد. این روش برای بزرگنمایی تصویر با استفاده از معادلات مشتقات مرتبه چهارم از تصویر رزولوشن بالای بدست آمده از الگوریتم LAZ استفاده می کند. روش پیشنهادی لبه ها را حفظ می کند و مصنوعات ماتی و ستاره ای در تصویر بزرگنمایی­شده را به حداقل می رساند. به منظور ارزیابی کیفیت تصویر بدست آمده از روش پیشنهادی، این مقاله روی هر دو معیار ارزیابی کمی و کیفی متمرکز شده است. نتایج این ارزیابی ها بر روی تصاویر متنوع، برتری روش پیشنهادی را نسبت به دیگر روش های بزرگنمایی تصویر نشان می دهد.

References   

 

1.     Zhu, X., Lei, W. and Zhang, S., "Image zooming using c&e model and its performance evaluation", in Intelligent Control and Information Processing (ICICIP), International Conference on, IEEE. (2010), 262-265.

2.     Combs, T. T. and Bederson, B. B., "Does zooming improve image browsing?", in Proceedings of the fourth ACM conference on Digital libraries, ACM. (1999), 130-137.

3.     Almira, J. and Romero, A., "Image zooming based on sampling theorems", MATerials MATematic,  Vol. 2011, No. 1, (2011).

4.     Lukac, R. and Plataniotis, K. N., "Bayer pattern based digital zooming approach", in Circuits and Systems, ISCAS'04. Proceedings of the 2004 International Symposium on, IEEE. Vol. 3, No., (2004), III-253-6 Vol. 3.

5.     Singh, C., Interpolation methods image zooming, in the National Conference FACM.: Thapar University, (2005), 29-34.

6.     Chadda, S., Kaur, N. and R., T., "Zooming techniques for digital images: A survey", InternatIonal Journal of Computer Science and Technology,  Vol. 3, No. 1, (2012), 519-523.

7.     Lehmann, T. M., Gonner, C. and Spitzer, K., "Survey: Interpolation methods in medical image processing", Medical Imaging, IEEE Transactions on,  Vol. 18, No. 11, (1999), 1049-1075.

8.     Battiato, S., Gallo, G. and Stanco, F., "A locally adaptive zooming algorithm for digital images", Image and Vision Computing,  Vol. 20, No. 11, (2002), 805-812.

9.     Kumar, M., An adaptive zooming algorithm for images, in computer science and engineering department. (2009).

10.   Allebach, J. and Wong, P. W., "Edge-directed interpolation", in Image Processing, 1996. Proceedings., International Conference on, IEEE. Vol. 3, (1996), 707-710.

11.   Li, X. and Orchard, M. T., "New edge-directed interpolation", Image Processing, IEEE Transactions on,  Vol. 10, No. 10, (2001), 1521-1527.

12.   Tam, W.-S., Kok, C.-W. and Siu, W.-C., "Modified edge-directed interpolation for images", Journal of Electronic Imaging,  Vol. 19, No. 1, (2010), 013011-013011-20.

13.   Wittman, T. C., Varational approaches to digital zooming, in University of Minnesota. (2006).

14.   Guichard, F. and Malgouyres, F., "Total variation based interpolation", in Proceedings of the European signal processing conference, Citeseer. Vol. 3, No., (1998), 1741-1744.

15.   Kim, H., Cha, Y. and Kim, S., "Curvature interpolation method for image zooming", Image Processing, IEEE Transactions on,  Vol. 20, No. 7, (2011), 1895-1903.

16.   Gao, R., Song, J.-P. and Tai, X.-C., "Image zooming algorithm based on partial differential equations technique", International Journal of Numerical Analysis and Modeling,  Vol. 6, No. 2, (2009), 284-292.

17.   Lysaker, M., Lundervold, A. and Tai, X.-C., "Noise removal using fourth-order partial differential equation with applications to medical magnetic resonance images in space and time", Image Processing, IEEE Transactions on,  Vol. 12, No. 12, (2003), 1579-1590.

18.   Lysaker, M. and Tai, X.-C., "Iterative image restoration combining total variation minimization and a second-order functional", International Journal of Computer Vision,  Vol. 66, No. 1, (2006), 5-18.

19.   Jähne, B., "Digital image processing", Measurement Science and Technology,  Vol. 13, No. 9, (2002), 1503.

20.   Wang, Z., Bovik, A. C., Sheikh, H. R. and Simoncelli, E. P., "Image quality assessment: From error visibility to structural similarity", Image Processing, IEEE Transactions on,  Vol. 13, No. 4, (2004), 600-612.

21.           Available from: www.freeimages.co.uk and  sipi.usc.edu/database.  





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir