Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 27, No. 1 (January 2014) 39-50   

downloaded Downloaded: 485   viewed Viewed: 2930

  LEACH ROUTING ALGORITHM OPTIMIZATION THROUGH IMPERIALIST APPROACH
 
S. M. Hosseinirad, M. Ali Mohammadi, S. K. Basu and A. A. Pouyan
 
( Received: June 01, 2013 – Accepted: September 14, 2013 )
 
 

Abstract    Routing is an important challenge in WSN due to the presence of hundreds or thousands of sensor nodes. Low Energy Adaptive Clustering Hierarchy (LEACH) is a hierarchical routing and data dissemination protocol. LEACH divides a network domain into several sub-domains that are called clusters. Non-uniformity of cluster distribution and CHs selection without considering the positions of other sensors may reduce the quality of cluster selection. Sensor nodes send data packets over long distances. Imperialist Competitive Algorithm (ICA) is an optimization algorithm inspired by social phenomenon. It considers colonization process as a stage of socio-political evolution. We improve performance of the LEACH algorithm using imperialist approach and study efficacy of it in terms of energy consumption, coverage and cluster uniformity and compare with those of the LEACH algorithm. Selection of suitable value for radio communication radius over the network lifetime is a trade-off between connectivity and sensors energy consumption. Empowering LEACH with ICA helps to find the best location of a CH in every cluster, it can conserve energy significantly, increase network lifetime, and maintain network connectivity. It can significantly reduce the number of active sensors going out of range over the lifetime of a network.

 

Keywords    WSN, Routing, ICA, Cluster Head, Active Sensor

 

چکیده    باتوجه به استفاده از صدها یا هزاران گره حسگر، مسیریابی یکی از چالشهای بسیارمهم در شبکه های حسگربیسیم می باشد. الگوریتم LEACH یک الگوریتم مبتنی بر مسیریابی سلسله مراتبی و پروتکل انتشار داده می باشد. الگوریتم LEACH ناحیه کاری شبکه را به چندین زیرناحیه که کلاستر نامیده می شود تقسیم می کند. توزیع نامناسب کلاسترها و انتخاب نامناسب سرکلاسترها بدون بررسی موقعیت مکانی سایر حسگرها، ممکن است به کاهش کیفیت انتخاب سرکلاسترها منجر شود.گره های حسگر بسته های داده را در فواصل دور ارسال میکنند. الگوریتم رقابت استعماری یک الگوریتم بهینه سازی است که از یک پدیده اجتماعی الهام گرفته است. این الگوریتم فرآیند استعمار را بعنوان یک پدیده اجتماعی بررسی می کند. در این مقاله ما با بهره گیری از الگوریتم رقابت استعماری راندمان الگوریتم LEACH را بهبود داده و کارایی آن را بر پارامتهایی نظیر مصرف انرژی، پوشش و پراکندگی یکنواخت کلاسترها مطالعه کرده و با الگوریتم LEACH مقایسه کرده ایم. انتخاب مقدار مناسب شعاع مخابراتی رادیویی در طول عمر شبکه تصمیم گیری میان اتصال در شبکه و مصرف انرژی گره های حسگر می باشد. قدرتمندسازی الگوریتم LEACH با کمک الگوریتم رقابت استعماری به یافتن بهترین مکان سرکلاستر در یک کلاستر، مصرف رضایتبخش انرژی، افزایش طول عمر شبکه و نگهداری پوشش شبکه کمک می کند. این قدرتمندسازی می تواند تعداد گره هایی حسگری خارج ازپوشش شبکه را بصورت قابل قبول کاهش دهد.

References   

 

1.     Akyildiz, I. F., Su, W., Sankarasubramaniam, Y. and Cayirci, E., "Wireless sensor networks: A survey", Computer Networks,  Vol. 38, No. 4, (2002), 393-422.

2.     Anastasi, G., Conti, M., Di Francesco, M. and Passarella, A., "Energy conservation in wireless sensor networks: A survey", Ad Hoc Networks,  Vol. 7, No. 3, (2009), 537-568.

3.     Arampatzis, T., Lygeros, J. and Manesis, S., "A survey of applications of wireless sensors and wireless sensor networks", in Intelligent Control, Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation, IEEE. (2005), 719-724.

4.     Akyildiz, I. F. and Kasimoglu, I. H., "Wireless sensor and actor networks: Research challenges", Ad Hoc Networks,  Vol. 2, No. 4, (2004), 351-367.

5.     Zheng, J. and Jamalipour, A., "Wireless sensor networks: A networking perspective", Wiley. com,  (2009).

6.     Pal, A., "Localization algorithms in wireless sensor networks: Current approaches and future challenges", Network Protocols and Algorithms,  Vol. 2, No. 1, (2010), 45-73.

7.     Hofmann-Wellenhof, B., Lichtenegger, H. and Collins, J., "Global positioning system. Theory and practice", Springer, Wien, Austria, (1993).

8.     Yan, T., He, T. and Stankovic, J. A., "Differentiated surveillance for sensor networks", in Proceedings of the 1st international conference on Embedded networked sensor systems, ACM. (2003), 51-62.

9.     De Couto David, R. K. and Morris, R., "A scalable location service for geographic ad hoc routing",  (2000).

10.   Li, X., Mao, Y. and Liang, Y., "A survey on topology control in wireless sensor networks", in Control, Automation, Robotics and ICARCV 2008. 10th International Conference on, IEEE, (2008), 251-255.

11.   Ko, Y. B. and Vaidya, N. H., "Locationaided routing (LAR) in mobile ad hoc networks", Wireless Networks,  Vol. 6, No. 4, (2000), 307-321.

12.   Shah, R. C. and Rabaey, J. M., "Energy aware routing for low energy ad hoc sensor networks", in Wireless Communications and Networking Conference, 2002. WCNC, IEEE, Vol. 1, (2002), 350-355.

13.   Akkaya, K. and Younis, M., "A survey on routing protocols for wireless sensor networks", Ad Hoc Networks,  Vol. 3, No. 3, (2005), 325-349.

14.   Haupt, R. L. and Haupt, S. E., "Practical genetic algorithms", John Wiley & Sons,  (2004).

15.   Dorigo, M. and Blum, C., "Ant colony optimization theory: A survey", Theoretical Computer Science,  Vol. 344, No. 2, (2005), 243-278.

16.   Atashpaz-Gargari, E. and Lucas, C., "Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition", in Evolutionary Computation, CEC 2007. IEEE Congress (2007), 4661-4667.

17.   Hosseinirad, S. and Basu, S., "Imperialist approach to cluster head selection in WSN", Special Issue of International Journal of Computer Applications on Wireless Communication and Mobile Networks, No.1, (2012), 1-5

18.   Heinzelman, W. R., Chandrakasan, A. and Balakrishnan, H., "Energy-efficient communication protocol for wireless microsensor networks", in System Sciences, Proceedings of the 33rd Annual Hawaii International Conference on, IEEE. Vol. 2, (2000), 10 -16

19.   Bandyopadhyay, S. and Coyle, E. J., "An energy efficient hierarchical clustering algorithm for wireless sensor networks", in INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. Societies, IEEE. Vol. 3, (2003), 1713-1723.

20.   Sann, Z. and Minn, K. T., "Simulation of the rumor routing algorithm in sensor networks", in Computer Research and Development (ICCRD), 3rd International Conference on, IEEE. Vol. 3, (2011), 10-14.

21.   Marc, A. K. J., Okada, K., Kanai, K. and Onozato, Y., "Greedy routing for maximum lifetime in wireless sensor networks", in Personal, Indoor and Mobile Radio Communications, 20th International Symposium on, IEEE. (2009), 1888-1892.

22.   Al-Karaki, J. N. and Kamal, A. E., "Routing techniques in wireless sensor networks: A survey", Wireless Communications, IEEE,  Vol. 11, No. 6, (2004), 6-28.

23.   Yao, Y. and Gehrke, J., "The cougar approach to in-network query processing in sensor networks", ACM Sigmod Record,  Vol. 31, No. 3, (2002), 9-18.

24.   Guo, J., Fang, J. a. and Chen, X., "Survey on secure data aggregation for wireless sensor networks", in Service Operations, Logistics, and Informatics (SOLI), 2011 IEEE International Conference on, (2011), 138-143.

25.   Stojmenovic, I., "Handbook of sensor networks: Algorithms and architectures", Wiley. com,  Vol. 49,  (2005).

26.   Mahmoud, A., Khedr, M. and Shaaban, S., "Hexagonal two tier data dissemination model for large scale wireless sensor networks", in Electronics, Communications and Computers (JEC-ECC), Japan-Egypt Conference on, IEEE. (2012), 138-144.

27.           Liang, J., Wang, J., Zhang, X. and Chen, J., "An adaptive probability broadcast-based data preservation protocol in wireless sensor networks", in Communications (ICC), IEEE International Conference on, IEEE. (2011), 1-5. 





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir