Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 27, No. 1 (January 2014) 63-68   

downloaded Downloaded: 266   viewed Viewed: 2019

  ACCURATE MODEL OF CAPACITANCE FOR MEMS SENSORS USING CORRUGATED DIAPHRAGM WITH RESIDUAL STRESS
 
B. Azizollah Ganji and M. Taybi
 
( Received: July 12, 2013 – Accepted: August 22, 2013 )
 
 

Abstract    In this paper we present a new model for calculating the capacitance of MEMS sensor with corrugated diaphragm. In this work the effect of residual stress is considered on deflection of diaphragm and capacitance of sensor. First, a new analytical analyzes have been carried out to derive mathematic expressions for central deflection of corrugated diaphragm and its relationship with residual stress. Then the capacitance and sensitivity of sensor using corrugated diaphragm with residual stress are calculated under various parameters such as bias voltage and pressure. The analytical results are compared with simulation using Finite Element Method (FEM). The results show that the new analytical model is very close with simulation results.

 

Keywords    residual stress, capacitance, corrugated diaphragm, sensor sensitivity

 

چکیده    در این مقاله روش جدیدی برای محاسبه ظرفیت خازنی سنسور میکروالکترومکانیکی با دیافراگم موج دار ارائه می­شود. همچنین اثر تنش پسماند بر روی جابجایی دیافراگم و ظرفیت خازنی سنسور در نظر گرفته می­شود. در ابتدا آنالیز تحلیلی برای بدست آوردن مقدار جابجایی مرکزی دیافراگم موج دار و رابطه­ی آن با تنش پس ماند صورت می­گیرد. سپس مقدار ظرفیت خازنی و حساسیت سنسور با دیافراگم موج دار دارای تنش پسماند تحت ولتاژ بایاس و فشار بدست آورده می­شود. نتایج تحلیلی با شبیه سازی که با استفاده از روش اجزاء محدود انجام شده است، مقایسه می­شود. مقایسه نشان می­دهد روش تحلیلی جدید به خوبی توانسته است نتایج شبیه سازی را دنبال کند.

References   

1.     Huang, C.-H., Tsai, M.-H., Lee, C.-H., Hsieh, T.-M., Liou, J.-C., Chen, L.-C., Yip, M.-C., and Fang, W., "Design and implementation of a novel CMOS mems condenser microphone with corrugated diaphragm", in Solid-State Sensors, Actuators and Microsystems Conference (TRANSDUCERS), 16th International, IEEE. (2011), 1026-1029.

2.     Ganji, B. A. and Nateri, M. S., "A high sensitive MEMS capacitive fingerprint sensor using slotted membrane", Microsystem Technologies,  Vol. 19, No. 1, (2013), 121-129.

3.     Shavezipur, M., Hashemi, S., Nieva, P. and Khajepour, A., "Development of a triangular-plate mems tunable capacitor with linear capacitance–voltage response", Microelectronic Engineering,  Vol. 87, No. 9, (2010), 1721-1727.

4.     Saeedi Vahdat, A., Rezazadeh, G. and Afrang, S., "Improving response of a MEMS capacitive microphone filtering shock noise", Microelectronics Journal,  Vol. 42, No. 5, (2011), 614-621.

5.     Fang, D.-M., Fu, S., Cao, Y., Zhou, Y. and Zhao, X.-L., "Surface micromachined RF MEMS variable capacitor", Microelectronics Journal,  Vol. 38, No. 8, (2007), 855-859.

6.     Chan, C.-K., Lai, W.-C., Wu, M., Wang, M.-Y. and Fang, W., "Design and implementation of a capacitive-type microphone with rigid diaphragm and flexible spring using the two poly silicon micromachining processes", Sensors Journal, IEEE,  Vol. 11, No. 10, (2011), 2365-2371.

7.     Ganji, B. A. and Majlis, B. Y., "Design and fabrication of a new mems capacitive microphone using a perforated aluminum diaphragm", Sensors and Actuators A: Physical,  Vol. 149, No. 1, (2009), 29-37.

8.     Ke, F., Miao, J. and Wang, Z., "A wafer-scale encapsulated RF MEMS switch with a stress-reduced corrugated diaphragm", Sensors and Actuators A: Physical,  Vol. 151, No. 2, (2009), 237-243.

9.     Bai, M. R., Liu, C. Y. and Chen, R. L., "Optimization of microspeaker diaphragm pattern using combined finite element–lumped parameter models", Magnetics, IEEE Transactions on,  Vol. 44, No. 8, (2008), 2049-2057.

10.   Miao, J., Lin, R., Chen, L., Zou, Q., Lim, S. Y., and Seah, S. H., "Design considerations in micromachined silicon microphones", Microelectronics Journal,  Vol. 33, No. 1, (2002), 21-28.

11.   Wang, W., Lin, R. and Ren, Y., "Design and fabrication of high sensitive microphone diaphragm using deep corrugation technique", Microsystem Technologies,  Vol. 10, No. 2, (2004), 142-146.

12.   Zou, Q., Li, Z. and Liu, L., "Design and fabrication of silicon condenser microphone using corrugated diaphragm technique", Microelectromechanical Systems, Journal of,  Vol. 5, No. 3, (1996), 197-204.

13.   Soin, N. and Majlis, B. Y., "An analytical study on diaphragm behavior for micro-machined capacitive pressure sensor", in Semiconductor Electronics, Proceedings. ICSE International Conference on, IEEE, (2002), 505-510.

14.   Kouravand, S., "Design and modeling of some sensing and actuating mechanisms for MEMS applications", Applied Mathematical Modelling,  Vol. 35, No. 10, (2011), 5173-5181.

15.   Taybi, M. and Ganji, B., "The effect of corrugations on mechanical sensitivity of diaphragm for MEMS capacitive microphone", International Journal of Engineering-Transactions B: Applications,  Vol. 26, No. 11, (2013), 1323.

16.           Jerman, J., "The fabrication and use of micromachined corrugated silicon diaphragms", Sensors and Actuators A: Physical,  Vol. 23, No. 1, (1990), 988-992.   





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir