|

|
IJE TRANSACTIONS A: Basics Vol. 27, No. 1 (January 2014) 101-112
|
Downloaded:
144 |
|
Viewed:
1844 |
|
|
ON FEASIBILITY OF ADAPTIVE LEVEL HARDWARE EVOLUTION FOR EMERGENT FAULT TOLERANT COMMUNICATION
|
|
|
Y. Baleghi Damavandi, K. Mohammadi, A. Upegi and Y. Thoma
|
|
|
( Received:
November 28, 2012
– Accepted: September 14, 2013 )
|
|
|
Abstract
A permanent physical fault in communication lines usually leads to a failure. The feasibility of evolution of a self
organized communication is studied in this paper to defeat this problem. In this case a communication protocol may
emerge between blocks and also can adapt itself to environmental changes like physical faults and defects. In spite of
faults, blocks may continue to function since a self organized nature can provide self-healing capabilities. In the
present paper, Evolvable Hardware is to create such a fault tolerant communication without any predefined protocol using
a GA algorithm. Evolvable Hardware is a concept that aims the application of evolutionary algorithms to hardware design.
The feasibility of this idea is studied in simulation of two reconfigurable blocks that are intended to transmit video
streams through their communication lines. Permanent physical faults are induced in the communication lines between
Evolvable Hardware blocks. Though the results show the emergence of fault tolerant protocols among Evolvable Hardware
blocks without human intervention, there are some limitations in functional and gate level evolution of the blocks.
Thus, a new adaptive approach is presented in this paper to defeat some limitations like the stalling effect of GA in
faulty conditions.
|
|
|
Keywords
Evolvable Hardware, Co-evolution, Genetic Algorithm, Emergent Communication
|
|
|
چکیده
يک نقص فيزيکي دائمي در خطوط ارتباطي بين دو عامل سختافزاري معمولا ميتواند به عدم عملکرد صحيح منجر شود. در اين مقاله به مطالعهي امکانپذيري تکامل يک ارتباط خودسازمانده براي غلبه بر مشکل ذکر شده پرداخته ميشود. در اين نوع ارتباط يک پروتکل تکاملي، بصورت خودبخودي بين عاملها تکامل مييابد که ميتواند خود را با تغييرات محيطي مثل نقصهاي فيزيکي وفق دهد. براي توليد چنين ارتباطي در اين پژوهش از سخت افزارهاي تکامل پذير استفاده شده است. سختافزار تكامل پذير با استفاده از الگوريتمهاي تكاملي در طراحي و تعيين ساختار مجدد سامانههاي سختافزاري پديد ميآيد. عاملهاي سخت افزاري به کار رفته در اين تحقيق از الگوريتم ژنتيک براي ايجاد يک ارتباط تحمل پذير خطا استفاده ميکنند.امکانپذيري اين ايده با شبيه سازي آزمون انتقال تصوير بين دوعامل سخت افزاري مورد مطالعه قرار گرفته است. در اين آزمون نقصهاي فيزيکي دائمي به خطوط ارتباطي بين عاملهاي سخت افزار تکامل پذير تزريق شده اند. نتايج اوليهي شبيهسازي نشان دهندهي توليد يک ارتباط خودسازمانده و مقاوم در برابر خطا بين عاملهاي سخت افزاري است، اگر چه در سطوح گيت و کارکردي محدوديتهايي براي بازيابي در برابر خطا وجود دارد. براي رفع اين محدوديتها، يک رهيافت وفقي براي استفاده در سخت افزارهاي تکامل پذير ارائه شده است که برخي از مشکلات مانند اثر ايستايي در الگوريتم ژنتيک را بهبود داده است.
|
|
References
1. Michael, P. G. and Huhns, N., "The
emergence of language among autonomous blocks", IEEE Internet Computing Magazine,
(2000), 90-92.
2. Neubauer,
"Emergence in a multi-block simulation of communicative behavior", Publications
of the Institute of Cognitive Science,
Vol. 11, No., (2004), 19-4.
3. Thangavelautham,
J., Barfoot, T. D. and D’eleuterio, G. M., Coevolving communication and cooperation for lattice formation tasks,
in Advances in artificial life., Springer. (2003) 857-864.
4. Damavandi, Y. B.
and Mohammadi, K., "Co-evolution for communication: An ehw approach",
J.
UCS, Vol. 13, No. 9, (2007),
1300-1308.
5. Lee, J. and
Sitte, J., "Gate-level morphogenetic evolvable hardware for scalability
and adaptation on fpgas", in Adaptive Hardware and Systems, AHS First
NASA/ESA Conference on, IEEE. (2006), 145-152.
6. Higuchi, T.,
Murakawa, M., Iwata, M., Kajitani, I., Liu, W., and Salami, M., "Evolvable
hardware at function level", in Evolutionary Computation, International
Conference on, IEEE. (1997), 187-192.
7. Hereford, J. M.,
"Fault-tolerant sensor systems using evolvable hardware", Instrumentation
and Measurement, IEEE Transactions on,
Vol. 55, No. 3, (2006), 846-853.
8. Nelson, V. P.,
Nagle, H. T., Carroll, B. D. and Irwin, J. D., "Digital logic circuit
analysis and design", Prentice-Hall, Inc.,
(1995).
9. Stomeo, E.,
Kalganova, T. and Lambert, C., "Generalized disjunction decomposition for
evolvable hardware", Systems, Man, and Cybernetics, Part B:
Cybernetics, IEEE Transactions on,
Vol. 36, No. 5, (2006), 1024-1043.
10. Baleghi
Damavandi, Y. and Mohammadi, K., "Fault tolerance in co-evolutionary
communication of ehw modules", Computers & Mathematics with
Applications, Vol. 57, No. 11, (2009),
1730-1735.
11. Fu-zheng,
Y., Xin-dai, W., Yi-lin, C. and Shuai, W., "A no-reference video quality
assessment method based on digital watermark", in Personal, Indoor and
Mobile Radio Communications, 2003. 14th IEEE Proceedings on, IEEE. Vol. 3, (2003),
2707-2710.
12. Damavandi,
Y. B. and Mohammadi, K., "Speed limit traffic sign detection and
recognition", in Cybernetics and Intelligent Systems, 2004 IEEE Conference
on, IEEE. Vol. 2, (2004), 797-802.
13. Abramovici,
M., Breuer, M. A. and Friedman, A. D., "Digital systems testing and
testable design", Computer science press New York, Vol. 2,
(1990).
14. Greenwood,
G. W. and Tyrrell, A. M., "Introduction to evolvable hardware: A practical
guide for designing self-adaptive systems", Wiley. com, Vol. 5,
(2006).
15. Upegui,
A., Thoma, Y., Sanchez, E., Perez-Uribe, A., Moreno, J. M., and Madrenas, J.,
"The perplexus bio-inspired reconfigurable circuit", in Adaptive
Hardware and Systems, AHS 2007. Second NASA/ESA Conference on, IEEE, (2007),
600-605.
16. Sanchez,
E., Perez-Uribe, A., Upegui, A., Thoma, Y., Moreno, J. M., Napieralski, A.,
Villa, A., Sassatelli, G., Volken, H., and Lavarec, E., "Perplexus:
Pervasive computing framework for modeling complex virtually-unbounded
systems", in Adaptive Hardware and Systems, Second NASA/ESA Conference on,
IEEE. (2007), 587-591.
17. BT,
I.-R. R., "656-1: Interfaces for digital component video signals in
525-line and 625-line television systems operating at the 4: 2: 2 level of
recommendation 601", Further reading, (1998).
18. Koren,
I. and Krishna, C. M., "Fault-tolerant systems", Morgan
Kaufmann, (2010).
19. Greenwood, G. W., Hunter, D. and Ramsden, E., "Fault
recovery in linear systems via intrinsic evolution", in Evolvable
Hardware, Proceedings. NASA/DoD Conference on, IEEE., (2004), 115-122.
|
|
|
|
|