Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 27, No. 1 (January 2014) 101-112   

downloaded Downloaded: 144   viewed Viewed: 1844

  ON FEASIBILITY OF ADAPTIVE LEVEL HARDWARE EVOLUTION FOR EMERGENT FAULT TOLERANT COMMUNICATION
 
Y. Baleghi Damavandi, K. Mohammadi, A. Upegi and Y. Thoma
 
( Received: November 28, 2012 – Accepted: September 14, 2013 )
 
 

Abstract    A permanent physical fault in communication lines usually leads to a failure. The feasibility of evolution of a self organized communication is studied in this paper to defeat this problem. In this case a communication protocol may emerge between blocks and also can adapt itself to environmental changes like physical faults and defects. In spite of faults, blocks may continue to function since a self organized nature can provide self-healing capabilities. In the present paper, Evolvable Hardware is to create such a fault tolerant communication without any predefined protocol using a GA algorithm. Evolvable Hardware is a concept that aims the application of evolutionary algorithms to hardware design. The feasibility of this idea is studied in simulation of two reconfigurable blocks that are intended to transmit video streams through their communication lines. Permanent physical faults are induced in the communication lines between Evolvable Hardware blocks. Though the results show the emergence of fault tolerant protocols among Evolvable Hardware blocks without human intervention, there are some limitations in functional and gate level evolution of the blocks. Thus, a new adaptive approach is presented in this paper to defeat some limitations like the stalling effect of GA in faulty conditions.

 

Keywords    Evolvable Hardware, Co-evolution, Genetic Algorithm, Emergent Communication

 

چکیده    يک نقص فيزيکي دائمي در خطوط ارتباطي بين دو عامل سخت­افزاري معمولا مي­تواند به عدم عملکرد صحيح منجر شود. در اين مقاله به مطالعه­ي امکان­پذيري تکامل يک ارتباط خودسازمانده براي غلبه بر مشکل ذکر شده پرداخته مي­شود. در اين نوع ارتباط يک پروتکل تکاملي، بصورت خودبخودي بين عاملها تکامل مي­يابد که مي­تواند خود را با تغييرات محيطي مثل نقصهاي فيزيکي وفق دهد. براي توليد چنين ارتباطي در اين پژوهش از سخت افزارهاي تکامل پذير استفاده شده است. سخت‌افزار تكامل پذير با استفاده از الگوريتمهاي تكاملي در طراحي و تعيين ساختار مجدد سامانه­هاي سخت‌افزاري پديد مي­آيد. عاملهاي سخت افزاري به کار رفته در اين تحقيق از الگوريتم ژنتيک براي ايجاد يک ارتباط تحمل پذير خطا استفاده مي­کنند.امکان­پذيري اين ايده با شبيه سازي آزمون انتقال تصوير بين دوعامل سخت افزاري مورد مطالعه قرار گرفته است. در اين آزمون نقصهاي فيزيکي دائمي به خطوط ارتباطي بين عاملهاي سخت افزار تکامل پذير تزريق شده اند. نتايج اوليه­ي شبيه­سازي نشان دهنده­ي توليد يک ارتباط خودسازمانده و مقاوم در برابر خطا بين عاملهاي سخت افزاري است، اگر چه در سطوح گيت و کارکردي محدوديتهايي براي بازيابي در برابر خطا وجود دارد. براي رفع اين محدوديتها، يک رهيافت وفقي براي استفاده در سخت افزارهاي تکامل پذير ارائه شده است که برخي از مشکلات مانند اثر ايستايي در الگوريتم ژنتيک را بهبود داده است.

References   

 

1.     Michael, P. G. and Huhns, N., "The emergence of language among autonomous blocks", IEEE Internet Computing Magazine, (2000), 90-92.

2.     Neubauer, "Emergence in a multi-block simulation of communicative behavior", Publications of the Institute of Cognitive Science,  Vol. 11, No., (2004), 19-4.

3.     Thangavelautham, J., Barfoot, T. D. and D’eleuterio, G. M., Coevolving communication and cooperation for lattice formation tasks, in Advances in artificial life., Springer. (2003) 857-864.

4.     Damavandi, Y. B. and Mohammadi, K., "Co-evolution for communication: An ehw approach", J. UCS,  Vol. 13, No. 9, (2007), 1300-1308.

5.     Lee, J. and Sitte, J., "Gate-level morphogenetic evolvable hardware for scalability and adaptation on fpgas", in Adaptive Hardware and Systems, AHS First NASA/ESA Conference on, IEEE. (2006), 145-152.

6.     Higuchi, T., Murakawa, M., Iwata, M., Kajitani, I., Liu, W., and Salami, M., "Evolvable hardware at function level", in Evolutionary Computation, International Conference on, IEEE. (1997), 187-192.

7.     Hereford, J. M., "Fault-tolerant sensor systems using evolvable hardware", Instrumentation and Measurement, IEEE Transactions on,  Vol. 55, No. 3, (2006), 846-853.

8.     Nelson, V. P., Nagle, H. T., Carroll, B. D. and Irwin, J. D., "Digital logic circuit analysis and design", Prentice-Hall, Inc.,  (1995).

9.     Stomeo, E., Kalganova, T. and Lambert, C., "Generalized disjunction decomposition for evolvable hardware", Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on,  Vol. 36, No. 5, (2006), 1024-1043.

10.   Baleghi Damavandi, Y. and Mohammadi, K., "Fault tolerance in co-evolutionary communication of ehw modules", Computers & Mathematics with Applications,  Vol. 57, No. 11, (2009), 1730-1735.

11.   Fu-zheng, Y., Xin-dai, W., Yi-lin, C. and Shuai, W., "A no-reference video quality assessment method based on digital watermark", in Personal, Indoor and Mobile Radio Communications, 2003. 14th IEEE Proceedings on, IEEE. Vol. 3, (2003), 2707-2710.

12.   Damavandi, Y. B. and Mohammadi, K., "Speed limit traffic sign detection and recognition", in Cybernetics and Intelligent Systems, 2004 IEEE Conference on, IEEE. Vol. 2, (2004), 797-802.

13.   Abramovici, M., Breuer, M. A. and Friedman, A. D., "Digital systems testing and testable design", Computer science press New York,  Vol. 2,  (1990).

14.   Greenwood, G. W. and Tyrrell, A. M., "Introduction to evolvable hardware: A practical guide for designing self-adaptive systems", Wiley. com,  Vol. 5,  (2006).

15.   Upegui, A., Thoma, Y., Sanchez, E., Perez-Uribe, A., Moreno, J. M., and Madrenas, J., "The perplexus bio-inspired reconfigurable circuit", in Adaptive Hardware and Systems, AHS 2007. Second NASA/ESA Conference on, IEEE, (2007), 600-605.

16.   Sanchez, E., Perez-Uribe, A., Upegui, A., Thoma, Y., Moreno, J. M., Napieralski, A., Villa, A., Sassatelli, G., Volken, H., and Lavarec, E., "Perplexus: Pervasive computing framework for modeling complex virtually-unbounded systems", in Adaptive Hardware and Systems, Second NASA/ESA Conference on, IEEE. (2007), 587-591.

17.   BT, I.-R. R., "656-1: Interfaces for digital component video signals in 525-line and 625-line television systems operating at the 4: 2: 2 level of recommendation 601", Further reading,  (1998).

18.   Koren, I. and Krishna, C. M., "Fault-tolerant systems", Morgan Kaufmann,  (2010).

19.           Greenwood, G. W., Hunter, D. and Ramsden, E., "Fault recovery in linear systems via intrinsic evolution", in Evolvable Hardware, Proceedings. NASA/DoD Conference on, IEEE., (2004), 115-122. 





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir