Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 27, No. 1 (January 2014) 131-142   

downloaded Downloaded: 468   viewed Viewed: 2779

  A NEW INTELLIGENT CONTROLLER FOR PARALLEL DC/DC CONVERTERS
 
M. Sarvi, M. Derakhshan and M. Sedighi Zade
 
( Received: May 14, 2013 – Accepted: August 22, 2013 )
 
 

Abstract    In this paper, the immune controller, is used to control the paralleled DC-DC converters. A PID controller is first applied and its coefficient is optimized using an intelligent (PSO) algorithm. Immune controller is then added to PID controller and an immune PID controller is formed. Two methods have been suggested to determine non-linear behavior of immune controller. In the first method, an exponential function is suggested and its unknown coefficient is optimized using PSO algorithm. In the second method, fuzzy logic has been used. Performance of the proposed control methods in the presence of various disturbances is investigated over a sample paralleled DC-DC converter and the effectiveness of the applied immune controller is verified with the comparison of simulation results. The results show the improvement of system performance with Immune PID controller by the two suppression function in comparison with the PID controller.

 

Keywords    Parallel DC-DC converter, PSO PID Controller, Immune PID Controller, Fuzzy Immune PID Controller.

 

چکیده    در این مقاله، از کنترل کننده ایمن برای کنترل مبدل های DC-DC استفاده شده است. ابتدا یک کنترل کننده PID مورد استفاده قرار می گیرد و ضرایب آن با یک الگوریتم هوشمند (بهینه سازی اجتماع ذرات) بهینه می شود. سپس کنترل کننده ایمن به کنترل کننده PID اضافه می شود و یک کنترل کننده PID ایمن شکل می گیرد. دو روش برای تعیین رفتار غیر خطی کنترل کننده ایمن پیشنهاد می شود. در روش اول، یک تابع نمایی پیشنهاد می گردد و ضرایب آن با استفاده از الگوریتم PSO بهینه می شوند. در روش دوم، منطق فازی استفاده می شود. عملکرد روش های کنترل پیشنهادی در حضور اختلالات مختلف در یک مبدل DC-DC موازی نمونه بررسی می شود و کارایی کنترل کننده ارائه شده با مقایسه نتایج شبیه سازی مورد بررسی قرار می گیرد. نتایج نشان می دهند که کنترل کننده PID ایمن با دو روش پیشنهادی در مقایسه با کنترل کننده PID مشخصه سیستم را بهتر می کنند.

References   

 

1.        Iu, H. and Tse C.K., “Study of low-frequency bifurcation phenomena of a parallel-connected boost converter system via simple averaged models”, IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications , Vol. 50, (2003), 679-685.

2.        López, M. and et al., “Current distribution control design for paralleled DC/DC converters using sliding-mode control”, IEEE Transactions on Industrial Electronics, Vol. 51, (2004), 419-428.

3.         Chen, W. and et al., “DC/DC conversion systems consisting of multiple converter modules: stability, control, and experimental verifications”, IEEE Transactions on Power Electronics, Vol. 24, (2009), 1463-1474.

4.        Garcera, G. and et al. “Analysis and design of a robust average current mode control loop for parallel buck DC-DC Converters to reduce line and load disturbance”, IET Electric Power Applications, Vol.151, (2004), 414-424.

5.        Garcerá, G., Pascual, M. and Figueres, E., “Robust average current-mode control of multimodule parallel DC-DC PWM converter systems with improved dynamic response”, IEEE Transactions on Industrial Electronics, Vol. 48, (2001), 995-1005.

6.        Kim, J.W., Choi, H.S. and Cho, B.H., “A novel droop method for converter parallel operation”, IEEE Transactions on Power Electronics, Vol. 17, (2002), 25-32.

7.        Luo, S. and et al., “A classification and evaluation of paralleling methods for power supply modules”, Proceedings of 30th Annual IEEE Power Electronics Specialists Conference, PESC 99 (1999).

8.        Garcia, P.D. and et al., “Sliding mode control for current distribution in DC-DC converters connected in parallel”, Proceedings of 27th Annual IEEE Power Electronics Specialists Conference, PESC'96 Record, (1996).

9.        Nair, M.D. and Sanakaran, R., “Simulation and experimental verification of closed loop operation of buck/boost DC-DC converter with soft switching”, International Journal of Engineering (IJE), Transaction C: Aspects, Vol. 25, (2011), 267-274.

10.     Chae S. and et al., “Digital current sharing method for parallel interleaved dc-dc converters using input ripple voltage”, IEEE Transactions on Industrial Informatics, Vol. 8, (2012), 536-544.

11.     Beccuti, A.G. and et al. “A decentralized explicit predictive control paradigm for parallelized DC-DC circuits”, IEEE Transactions on Control System Technology, Vol. 21, (2013), 136-148.

12.     Anand, S. and Fernandes, B.G., “Modified droop controller for paralleling of DC-DC converters in stand alone DC system”, IET Power Electronics, Vol.5, (2012), 782-789.

13.     Wang, J.B., “Parallel DC-DC converters system with a novel primary droop current sharing control”, IET Power Electronics, Vol.5, (2012), 1569-1580.

14.     Tsang C. W. and et al., “Active current ripple cancellation in parallel connected buck converter modules”, IET Power Electronics, Vol.6, (2013), 721-731.

15.     Huang, Y. and Tse, C., “Circuit theoretic classification of parallel connected DC–DC converters”, IEEE Transactions on Circuits and Systems I: Vol. 54, (2007), 1099-1108.

16.     Natsheh, A.N., Kettleborough, J.G., and Nazzal, J.M., “Analysis, simulation and experimental study of chaotic behaviour in parallel-connected DC–DC boost converters”, Chaos, Solitons & Fractals, Vol. 39, (2009), 2465-2476.

17.     Tomescu, B. and VanLandingham, H., “Improved large-signal performance of paralleled DC-DC converters current sharing”, IEEE Transactions on Power Electronics, Vol. 14, (1999), 573-577.

18.     Cheng, C.H., Cheng, P.J. and Xie, M.J., “Current sharing of paralleled DC–DC converters using GA-based PID controllers”, Expert Systems with Applications, Vol. 37, (2010), 733-740.

19.      Gaing, Z.L., “A particle swarm optimization approach for optimum design of PID controller in AVR system”, IEEE Transactions on Energy Conversion, Vol. 19, (2004), 384-391.

20.     Kennedy, J., Eberhart, R., “Particle swarm optimization”, Proceedings of IEEE International Conference on Neural Networks. (1995).

21.      Sadafi, M.H. and et al., “Multi objective optimization of solar thermal energy storage using hybrid of particle swarm optimization”, International Journal of Engineering (IJE) Transactions B: Application, Vol. 24, (2011), 367-376.

22.     Tiwari, S.K., Kaur, G., and Singh, H., “Analysis of fuzzy PID and immune PID controller for three tank liquid level control”, International Journal of Soft Computing and Engineering , Vol. 1, (2011), 185-189.

23.     Ren, X.Y. and et al., “Application of improved fuzzy immune PID controller to bending control system”, International Journal of Iron and Steel Research, Vol. 18, (2011), 28-33.

24.      Su, Y.X. and et al., “Fuzzy-immune PID control for AMB systems”, Wuhan University Journal of Natural Sciences, Vol. 11, (2006), 637-641.

Wang, L.X., “A Course in Fuzzy Systems and Control”, Prentice-Hall, Englewood Cliffs, NJ.. (1997)





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir