IJE TRANSACTIONS A: Basics Vol. 27, No. 1 (January 2014) 157-170   

downloaded Downloaded: 620   viewed Viewed: 3507

M. Abdo, A. R. Toloei, A. R. Vali and M. R. Arvan
( Received: April 07, 2013 – Accepted: August 22, 2013 )

Abstract    The gimbal stabilization mechanism is used to provide the stability to an object mounted on the gimbal by isolating it from the base angular motion and vibration. The purpose of this paper is to present a model of control servo system for one axis gimbal mechanism using a cascade PID controller. The gimbal torque relationships are derived by taking into consideration the base angular motion. The conventional PID controller and three cascade controller structures are investigated. The servo control loop is built and modelled in MATLAB/Simulink using these controllers. The simulation results are compared and the servo system performance is analysed for each controller in terms of performance criteria. The comparison results prove that a further improved system performance is achieved using I-PD controller as compared to the system performance obtained when the other controllers are utilized. The paperís value lies in designing the servo control system using a modified controller constitutes of tow parallel I-PD controllers related with a switch depends on the base angular rate as a threshold. The results show that the modified system realizes the desired servo system requirements.


Keywords    Gimbal System, Rtae Gyro, Line of Sight, Stabilization Loop, Servo System, DC Motor


چکیده    به منظور تامین پایداری یک جسم قرار داده شده بر روی طوقه، از سیستم مکانیزم پایدارسازی طوقه استفاده می≠شود. این مکانیزم بر مبنای ایزوله کردن جسم از حرکت زاویه≠ای و لرزش مبنا عمل می≠نماید. در این مقاله، یک مدل کنترل سیستم سروو برای مکانیسم طوقه یک درجه آزادی با استفاده از کنترل≠کننده≠های تناسبی-مشتقی- انتگرالی آبشاری (Cascade PID)ارایه شده است. روابط گشتاور طوقهبا در نظر گرفتن حرکت زاویه≠ای مبنا استخراج شده و ساختار کنترل≠کننده PID معمول و سه ساختار متفاوت کنترل≠کننده PID آبشاری مورد بررسی قرار گرفته است. حلقه کنترلی سروو با استفاده از کنترل≠کننده≠های فوق در محیط نرم≠افزار MATLAB/Simulink مدلسازی شده است. نتایج حاصل از شبیه≠سازی مقایسه وکارایی سیستم سروو با اندازه≠گیری معیارهای عملکرد سیستم در هر یک از این حالات مورد بررسی قرار گرفته است. مقایسه این نتایج نشان می≠دهد که بیشترین کارایی بهبود داده شده با استفاده از کنترل≠کننده I-PD حاصل شده است. نوآوری این مقاله در طراحی یک سیستم کنترل سروو با استفاده از کنترل≠کننده اصلاح شده می≠باشدکه شامل دو کنترل≠کننده I-PD موازی است. این کنترل≠کننده≠ها با استفاده از یک سوئیچ دارای مقدار آستانه فرمان می≠گیرند. نتایج حاصل از شبیه≠سازی این ساختار، نشان می≠دهد که کنترل≠کننده پیشنهادی الزامات یک سیستم سروو مطاوب را برآورده کرده است.


1.     Masten, M. K., "Inertially stabilized platforms for optical imaging systems", Control Systems, IEEE,  Vol. 28, No. 1, (2008), 47-64.

2.     Hilkert, J., "Inertially stabilized platform technology concepts and principles", Control Systems, IEEE,  Vol. 28, No. 1, (2008), 26-46.

3.     Singh, R., Hanmandlu, M., Khatoon, S. and Madsu, V. K., "Modeling and simulation of the dynamics of a large size stabilized gimbal platform assembly",  Vol. 1, (2008), 111-119.

4.     Rue, A., "Precision stabilization systems", Aerospace and Electronic Systems, IEEE Transactions on,  No. 1, (1974), 34-42.

5.     Ekstrand, B., "Equations of motion for a two-axes gimbal system", Aerospace and Electronic Systems, IEEE Transactions on,  Vol. 37, No. 3, (2001), 1083-1091.

6.     Otlowski, D. R., Wiener, K. and Rathbun, B. A., "Mass properties factors in achieving stable imagery from a gimbal mounted camera", in SPIE Defense and Security Symposium, International Society for Optics and Photonics. (2008), 69460B-69460B-13.

7.     Makableh, Y., "Efficient control of dc servomotor systems using backpropagation neural networks",  (2011).

8.     Korayem, M. H., Ahmadi, R., Jaafari, N., Jamali, Y. and Kiomarsi, M., "Design, modeling, implementation and expermental analysis of 6r robot", International Journal of Engineering,  Vol. 21, (2008), 71-78.

9.     Akar, M. and Temiz, I., "Motion controller design for the speed control of dc servo motor", International Journal of Applied Mathematics and Informatics,  Vol. 4, No. 1, (2007), 131-137.

10.   Rigatos, G. G., "Adaptive fuzzy control of dc motors using state and output feedback", Electric Power Systems Research,  Vol. 79, No. 11, (2009), 1579-1592.

11.   Rigatos, G. G., "Particle and kalman filtering for state estimation and control of dc motors", ISA Transactions,  Vol. 48, No. 1, (2009), 62-72.

12.   Lee, H.-P. and Yoo, I.-E., "Robust control design for a two-axis gimbaled stabilization system", in Aerospace Conference, IEEE., (2008), 1-7.

13.   Shuang, Y. and Yanzheng, Z., "A new measurement method for unbalanced moments in a two-axis gimbaled seeker", Chinese Journal of Aeronautics,  Vol. 23, No. 1, (2010), 117-122.

14.   Hasturk, O., Erkmen, A. M. and Erkmen, İ., "Proxy-based sliding mode stabilization of a two-axis gimbaled platform", Target,  Vol. 3, No. 4. (2011)

15.   Khodadadi, H., Motlagh, M. R. J. and Gorji, M., "Robust control and modeling a 2-dof inertial stabilized platform", in Electrical, Control and Computer Engineering (INECCE), International Conference on, IEEE. (2011), 223-228.

16.   Tang, K., Huang, S., Tan, K. and Lee, T., "Combined pid and adaptive nonlinear control for servo mechanical systems", Mechatronics,  Vol. 14, No. 6, (2004), 701-714.

17.   Malaysia, M., "Non-linear modeling and cascade control of an industrial pneumatic actuator system", Australian Journal of Basic and Applied Sciences,  Vol. 5, No. 8, (2011), 465-477.

18.   Malhotra, R., Singh, N. and Singh, Y., "Design of embedded hybrid fuzzy-ga control strategy for speed control of dc motor: A servo control case study", International Journal of Computer Applications,  Vol. 6, No. 5, (2010), 37-46.

19.   Abjadi, N., Soltani, J., Pahlavaninizhad, M. and Askari, J., "A nonlinear adaptive controller for speed sensorless pmsm taking the iron loss resistance into account", in Electrical Machines and Systems, ICEMS Proceedings of the Eighth International Conference on, IEEE. Vol. 1,  (2005), 188-193.

20.   Khajorntraidet, C. and Srisertpol, J., "Torque control for dc servo motor using adaptive load torque compensation", in Proceedings of the 9th WSEAS international conference on System science and simulation in engineering, World Scientific and Engineering Academy and Society (WSEAS). (2010), 454-458.

21.   Akar, M., Hekim, M., Temiz, I. and Dogan, Z., "The speed and torque control of direct current servo motors by using cascade fuzzy pi controller", Przegląd Elektrotechniczny Selected full Texts,  Vol. 88, No. 5b, (2012), 123-127.

22.   Masten, M. K. and Hilkert, J., "Electromechanical system configurations for pointing, tracking, and stabilization applications", in Technical Symposium Southeast, International Society for Optics and Photonics. (1987), 75-87.

23.           Stokum, L. A. and Carroll, G. R., "Precision stabilized platform for shipborne electro-optical systems", SPIE,  Vol. 493, (1984), 414-425.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir