Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 27, No. 10 (October 2014) 1503-1510   

downloaded Downloaded: 264   viewed Viewed: 2440

  REVIEW HEAT EXCHANGER: RESEARCH DEVELOPMENT OF SELF-ROTATING INSERTS IN HEAT EXCHANGER TUBES
 
Z. Cancan, L. Yafei, W. Li, X. Ke and W. Jinxing
 
( Received: January 18, 2014 – Accepted: June 26, 2014 )
 
 

Abstract    Heat exchangers are widely used in power engineering and industrial applications, many techniques such as coiled tube, surface tension devices, rough surfaces, extended surfaces have been investigated to enhancethermal performance and to minimize the cost and size of the heat exchanger equipment. One of the most important techniques is tube insert. In general,tube inserts can be classified into two broad categories: stationary inserts and self-rotating inserts.Compared with stationary inserts, the self-rotating inserts can rotate in the tube by fluid and the comprehensive performance of self-rotating inserts is improved significantly.This paper mainly focuses on reviewing the large number of experimental and numerical works taken by researchers on self-rotating inserts such as twisted tapes,miniature hydraulic turbine,turbine-type swirl generatorsetc.toimprove the thermal efficiency of heat exchanger and serviceable to designers implementing passiveenhancement techniques in heat exchange. The authors found that self-rotating inserts can strengthen the heat transfer efficiency meanwhile achieve on-line automatic anti-scaling and descaling effect. When the fluid velocity is more than 0.2m/s, most of self-rotating inserts can be applied meanwhile the convective heat transfer correlations have been discussed. The heat transfer performance and frictional loss have been discussed to get the optimal configuration of self-rotating inserts. Determining how to find the optimal self-rotating insert is the main objective of this paper..

 

Keywords    Tube Inserts, Self-rotating, Heat Transfer Enhancement, Anti-scaling and Descaling

 

چکیده    مبدل های حرارتی به طور گسترده­ای در تولید انرژی و کاربردهای صنعتی استفاده می­شود. فنون متعددی مانند لوله­های مارپیچ، تجهیزات تغییر کشش سطحی، خشن­سازی سطوح و سطوح گسترش­یافته به منظور افزایش عملکرد حرارتی و به حداقل رساندن هزینه و اندازه تجهیزات مبدل هاي حرارتی بررسی شده است. یکی از فنون مهم قرار دادن قطعه اضافی درون لوله است. به طور کلی، قطعه اضافی درون لوله را می­توان به دو گروه عمده طبقه بندی کرد:قطعه اضافی ثابت و قطعه اضافی خودگرد (خودچرخش). در مقایسه با قطعه اضافی ثابت، قطعه اضافی خودگرد می­تواند در لوله­های همراه مایع بچرخد. عملکرد قطعه اضافی خودگرد به طور قابل توجهی بهبود یافته است. در این مقاله به طور عمده تعداد زیادی از آثار تجربی و عددی انجام شده توسط محققان در قطعه اضافی خودگرد بررسی مانند نوار حلزونی، توربین هیدرولیک مینیاتور، ژنراتور چرخش توربین و غیره بررسی شده است. بهبود بهره­وری حرارتی مبدل های حرارتی و شرایط تعمیر مورد علاقه طراحان اجرای فنون تقویت غیرعامل در تبادل حرارت است. آنها دریافتند که قطعه اضافی خودگرد می تواند کارایی انتقال حرارت، در عین حال رسیدن به ویژگی پوسته پوسته نشدن و پاک کنندگی رسوب به صورت خودکار هنگامی که سرعت سیال بیشتر از sm / 0.2 باشد، بسیاری از قطعه اضافی خودگرد قابل استفاده­اند. در عین حال همرفتی انتقال حرارت نیز مطرح شده است. برای به دست آوردن تنظیمات بهینه از قطعه اضافی خودگرد عملکرد انتقال حرارت و افت اصطکاکی نیز مورد بحث قرار گرفته است. تعیین چگونگی پیدا کردن قطعه اضافی مطلوب خودگرد هدف اصلی این مقاله است.

References   

 

1.     Liebenberg, L. and Meyer, J.P., "In-tube passive heat transfer enhancement in the process industry", Applied Thermal Engineering,  Vol. 27, No. 16, (2007), 2713-2726.

2.     Sheikhzadeh, G., Arefmanesh, A., Kheirkhah, M. and Abdollahi, R., "Numerical study of natural convection in an inclined cavity with partially active side walls filled with cu-water nanofluid", International Journal of Engineering-Transactions B: Applications,  Vol. 24, No. 3, (2011), 279.

3.     Jahanshahi Javaran, E., Gandjalikhan Nassab, S. and Jafari, S., "Numerical simulation of a three-layered radiant porous heat exchanger including lattice boltzmann simulation of fluid flow",  (2011).

4.     Rostamzadeh, A., Jafarpur, K., Goshtasbirad, E. and Doroodmand, M., "Experimental investigation of mixed convection heat transfer in vertical tubes by nanofluid: Effects of reynolds number and fluid temperature", International Journal of Engineering-Transactions B: Applications,  Vol. 27, No. 8, (2014), 1251.

5.     Goudarzi, K., Yousef-abad, S.A., Shojaeizadeh, E. and Hajipour, A., "Experimental investigation of thermal performance in an advanced solar collector with spiral tube", International Journal of Engineering-Transactions A: Basics,  Vol. 27, No. 7, (2013), 1149.

6.     Bas, H. and Ozceyhan, V., "Heat transfer enhancement in a tube with twisted tape inserts placed separately from the tube wall", Experimental Thermal and Fluid Science,  Vol. 41, No.3, (2012), 51-58.

7.     Wongcharee, K. and Eiamsa-Ard, S., "Friction and heat transfer characteristics of laminar swirl flow through the round tubes inserted with alternate clockwise and counter-clockwise twisted-tapes", International Communications in Heat and Mass Transfer,  Vol. 38, No. 3, (2011), 348-352.

8.     Moawed, M., "Heat transfer and friction factor inside elliptic tubes fitted with helical screw-tape inserts", Journal of Renewable Sustainable Energy,  Vol. 3, (2011), 1-15.

9.     Guo, J., Fan, A., Zhang, X. and Liu, W., "A numerical study on heat transfer and friction factor characteristics of laminar flow in a circular tube fitted with center-cleared twisted tape", International Journal of Thermal Sciences,  Vol. 50, No. 7, (2011), 1263-1270.

10.   Shabanian, S., Rahimi, M., Shahhosseini, M. and Alsairafi, A., "Cfd and experimental studies on heat transfer enhancement in an air cooler equipped with different tube inserts", International Communications in Heat and Mass Transfer,  Vol. 38, No. 3, (2011), 383-390.

11.   Anvari, A., Lotfi, R., Rashidi, A. and Sattari, S., "Experimental research on heat transfer of water in tubes with conical ring inserts in transient regime", International Communications in Heat and Mass Transfer,  Vol. 38, No. 5, (2011), 668-671.

12.   Promvonge, P., Khanoknaiyakarn, C., Kwankaomeng, S. and Thianpong, C., "Thermal behavior in solar air heater channel fitted with combined rib and delta-winglet", International Communications in Heat and Mass Transfer,  Vol. 38, No. 6, (2011), 749-756.

13.   Tuo, H., "Thermaleconomic analysis of a transcritical rankine power cycle with reheat enhancement for a lowgrade heat source", International Journal of Energy Research,  Vol. 37, No. 8, (2013), 857-867.

14.   Tuo, H. and Hrnjak, P., "New approach to improve performance by venting periodic reverse vapor flow in microchannel evaporator", International Journal of Refrigeration,  Vol. 36, No. 8, (2013), 2187-2195.

15.   Liu, S. and Sakr, M., "A comprehensive review on passive heat transfer enhancements in pipe exchangers", Renewable and Sustainable Energy Reviews,  Vol. 19, No., (2013), 64-81.

16.   Yu, X.M. and and Yu, T.L., "The experimental study of automatic rotating helical heat transfer technology", Chemical Equipment Technology,,  Vol. 18, (1997), 4-8.

17.   Yu, X.M., Wu, J.X. and and Yu, T.L., "The rotating and vibrating spiral of cleaning and preventing fouling automaticity", Chemical Cleaning,  Vol. 12, (1996), 34-37.

18.   Yu, T., Liu, G., Yu, X. and ZHI, X.-h., "Automatic cleaning and heat transfer enhancing technology for intensified steel spiral with plastic coat on driving wheel", Journal of Engineering Design. Hangzhou,  Vol. 13, No. 2, (2006), 95-98.

19.   Xing, C., Meng, J.A. and and Li, Z.X., "Heat transfer and rotating features of inserted spring rotors", Journal of Engineering Thermophysics,  Vol. 31, (2010), 2105-2108.

20.   Solano, J., Herrero, R., Espín, S., Phan, A. and Harvey, A., "Numerical study of the flow pattern and heat transfer enhancement in oscillatory baffled reactors with helical coil inserts", Chemical Engineering Research and Design,  Vol. 90, No. 6, (2012), 732-742.

21.   Sarada, S.N., Raju, A.S.R., Radha, K.K. and Sunder, L.S., "Enhancement of heat transfer using varying width twisted tape inserts", International Journal of Engineering, Science and Technology,  Vol. 2, No. 6, (2010).

22.   Lin, Z. and Qian, H.W., Yu, X.M., and Yu, X.M.,, "Heat transfer enhancement mechanims of heat exchanger tubes with rotating twisted tape insert", Chinese Journal of Mechanical Engineering,  Vol. 43, (2007), 140-143.

23.   Lin, Z., You, Y.K., Qian, H.W., Liu, Y., Yu, X.M.,  and and Yu, X.M., "Experimental research of self-preventing fouling technology for the self-rotating twisted tape in heat exchangers", Chemical Engineering,  Vol. 34, (2006), 16-19.

24.   Yu, T., Yu, X., Zhi, X., JIANG, S. and PENG, D., "Research on the twisted strip with teeth to enhance self-cleaning ability of heat transfer tubes at low flowing velocity", Natural Science Journal-Xiangtan University,  Vol. 26, No. 1, (2004), 89-91.

25.   Peng, D.Q., Liang, G.Y., Yu, X.M., and and Jin, J.J., "New straight strip-insert with elliptical teeth and broken edge for removing fouling and enhancing heat transfer", Journal of Engineering Design,  Vol. 13, No. 6, (2006), 392-395.

26.   Eiamsa-Ard, S., Thianpong, C., Eiamsa-Ard, P. and Promvonge, P., "Thermal characteristics in a heat exchanger tube fitted with dual twisted tape elements in tandem", International Communications in Heat and Mass Transfer,  Vol. 37, No. 1, (2010), 39-46.

27.   Ibrahim, E., "Augmentation of laminar flow and heat transfer in flat tubes by means of helical screw-tape inserts", Energy Conversion and Management,  Vol. 52, No. 1, (2011), 250-257.

28.   Lin, R., Lin, Q., Feng, Q. and Shi, W., "Study on the miniature hydraulic turbine in the heat exchanger tube", Jixie Gongcheng Xuebao(Chinese Journal of Mechanical Engineering)(China),  Vol. 37, No. 7, (2001), 41-43.

29.   Lin, J.Y., Lin, Q.Y. and and Lin, R.D., "Rotating speed calculation for hydraulic turbine inside heat exchanger tubes", Chinese Journal of Mechanical Engineering,  Vol. 44, (2008), 105-111.

30.   Lin, Q.Y., Lin, R.D. and and Li, P.N., "Experimental on the primary structural parameters of self-antifouling hydraulic turbine inside heat exchanger tube", Chinese Journal of Mechanical Engineering,  Vol. 15, (2004), 346-348.

31.   Li, Q.Y., Li, P.N. and and Lin, R.D., "Study on the heat transfer enhancement by the hydraulic turbine in a tube", Chinese Journal of Mechanical Engineering,  Vol. 40, (2004), 165-169.

32.   Yang, W., Ding, Y., Geng, L. and Huang, W., "Rotor-assembled automatic cleaning and heat transfer enhancement device", CN Pat., (2005).

33.   Zhang, Z., Yang, W., Guan, C., Ding, Y., Li, F. and Yan, H., "Heat transfer and friction characteristics of turbulent flow through plain tube inserted with rotor-assembled strands", Experimental Thermal and Fluid Science,  Vol. 38, (2012), 33-39.

34.   Zhang, Z., Yan, H., Yang, W., Zhou, Y., Ding, Y. and Guan, C., "Heat transfer enhancement in the tube fitted with left–right helical blade rotors", Applied Thermal Engineering,  Vol. 55, No. 1, (2013), 95-101.

35.   Duangthongsuk, W. and Wongwises, S., "An experimental investigation of the heat transfer and pressure drop characteristics of a circular tube fitted with rotating turbine-type swirl generators", Experimental Thermal and Fluid Science,  Vol. 45, No., (2013), 8-15.

36.   Duangthongsuk, W. and Wongwises, S., "Comparison of the heat transfer performance and friction characteristics between fixed and rotating turbine-type swirl generators fitted in a small circular tube", Experimental Thermal and Fluid Science,  Vol. 50, (2013), 222-228.

37.   Peng, D.Q., Tian, Q., Yu, T.L., , Wang, W.Q., Wang, Z.Q. and and Luo, G., "Self-rotating and convective heat transfer performance of imbalance spiral-gear insert in tubes", CIESC Journal,  Vol. 64, (2013), 2833-2838.

38.   Xing, C., Meng, J.A. and and Li, Z.X., "Flow resistance and anti-fouling features of inserted auto-rotating rotors", Journal of Engineering Thermophysics,  Vol. 32, (2011), 655-658.

39.   Xing, C., MENG, J.a. and LI, Z., "Flow resistance and rotor rotation characteristics in a circular tube with new rotor inserts", Journal of Tsinghua University (Science and Technology),  Vol. 5, (2011), 031.

40.   Zhu, X.L., Meng, J.A. and and Li, Z.X., "Numerical simulation and analysis of flow in circular tube with rotors insert", Journal of Engineering Thermophysics,  Vol. 34, (2013), 1123-1126.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir