Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 27, No. 10 (October 2014) 1511-1518   

downloaded Downloaded: 146   viewed Viewed: 2333

  STUDYING PERFORMANCE OF DUBININ-ASTAKHOV AND DUBININ-RADUCHKEVIC EQUATIONS TO EVALUATE NANOPORE VOLUME AND PORE SIZE OF MCM-41 PARTICLES (TECHNICAL NOTE)
 
N. Saeidi, M. Parvini and M. R. Sarsabili
 
( Received: February 15, 2014 – Accepted: June 26, 2014 )
 
 

Abstract    MCM-41 particles were synthesized using inorganic raw materials and Cetyltrimethylammonium bromide (CTAB). The textural properties and structure of MCM-41 particles were characterized by XRD, SEM, TEM and N2 adsorption-desorption methods. To study performance of Dubinin-Astakhov and Dubinin-Raduchkevic isotherm models in evaluating mesopore volume and pore size of MCM-41 samples, the mesopore volume and pore size of several MCM-41 samples were calculated by means of two mentioned isotherm models and by utilizing N2 adsorption isotherms and XRD data. The obtained results also compared with the mesopore volume and pore size calculated by other methods. The results showed that the calculated mesopore volume and pore size on the samples with the fraction of mesopore volume > 0.9 had not good consistency with XRD data and the results obtained by other methods. However, the calculated mesopore volume and pore size on the samples with the fraction of mesopore volume ≤ 0.9 were in good agreement with XRD data and other advanced simulation techniques.

 

Keywords    Nitrogen isotherm data, MCM-41, Dubinin-Astakhov and Dubinin-Raduchkevic equations, Nanopore (mesopore) volume, Pore size

 

چکیده    ذرات ام سی ام 41 با استفاده از مواد خام غیر آلی و ستیل تری متیلامونیوم برمید سنتز شد. خصوصیات ساختاری و بافتی اش به وسیله تست های ایکس آر دی، اس ای ام، تی ای ام و جذب- دفع هم دمای نیتروژن بررسی شد. برای بررسی کارایی معادلات هم دمای دوبینین آستاخوف و دوبینین راداچکویچ در ارزیابی کردن حجم مزو حفرات و اندازه حفرات نمونه های ام سی ام 41، حجم مزو حفرات و اندازه حفرات چندین نمونه از ذرات ام سی ام 41 به وسیله دو مدل هم دمای ذکر شده و با استفاده از داده های به دست آمده از جذب- دفع هم دمای نیتروژن و ایکس آر دی، محاسبه شد. نتایج به دست آمده در مورد حجم مزو حفرات و اندازه حفرات محاسبه شده با دو مدل ذکر شده، با حجم مزو حفرات و اندازه حفرات محاسبه شده با دیگر روش های پیشرفته مقایسه شد. نتایج نشان دادند که حجم مزو حفرات و اندازه ذرات محاسبه شده با دو مدل ذکر شده در مورد نمونه هایی که کسر حجم مزو حفرات شان از 9/0 بیشتر است سازگاری مناسبی با داده های به دست آمده از ایکس آر دی و روش های دیگر، ندارند. هرچند، حجم مزو حفرات و اندازه حفرات محاسبه شده با دو روش هم دمای ذکر شده و در مورد نمونه هایی که کسر حجم مزو حفرات شان کم تر از 9/0 است سازگاری مناسبی با داده های به دست آمده از ایکس آر دی و دیگر تکنیک های شبیه سازی پیشرفته، دارند.

References   

1.     Anbia, M. and Ghaffari, A., "Modified nanoporous carbon material for anionic dye removal from aqueous solution", International Journal of Engineering-Transactions B: Applications,  Vol. 25, No. 4, (2012), 259.

2.     Anbia, M., and Davijani, H.A. and "Preparation and structural characterization of a novel nanoporous carbon (cmk-3) functionalized with ethylenediamine its use in removal of cu(ii) and pb(ii) ions from aqueous media", International Journal of Engineering-Transactions B: Applications,  Vol. 27, (2014), 1425-1434.

3.     Ghorbani, F., Younesi, H., Mehraban, Z., Celik, M.S., Ghoreyshi, A. and Anbia, M., "Aqueous cadmium ions removal by adsorption on aptms grafted mesoporous silica mcm-41 in batch and fixed bed column processes", International Journal of EngineeringTransaction B: Applications,  Vol. 26, No. 5, (2013).

4.     Liou, T.-H., "A green route to preparation of mcm-41 silicas with well-ordered mesostructure controlled in acidic and alkaline environments", Chemical Engineering Journal,  Vol. 171, No. 3, (2011), 1458-1468.

5.     Ravikovitch, P.I. and Neimark, A.V., "Characterization of nanoporous materials from adsorption and desorption isotherms", Colloids and Surfaces A: Physicochemical and Engineering Aspects,  Vol. 187, (2001), 11-21.

6.     Favvas, E.P., Mitropoulos, A.C. and and Stefanopoulos, K.L., "Simple equation for accurate mesopore size calculations", Micropore and Mesopore Material,  Vol. 145, (2011), 9-13.

7.     Zhai, S.R., Wei, Z.P., An, Q.D., Wub, D. and Sun, Y.H., "Facile assembly of dispersed zrmcm41 nanoparticles promoted insitu by zirconium salt", Journal of the Chinese Chemical Society,  Vol. 58, No. 2, (2011), 181-185.

8.     Emine, K., Nuray O., K., G., and Kırali, M. and "Synthesis and characterization of ba/mcm-41", Turkish Journal of Chemistry,  Vol. 34, (2010), 935-943.

9.     Freundlich, H. and Hatfield, H.S., "Colloid and capillary chemistry",  (1926).

10.   Langmuir, I., "The adsorption of gases on plane surfaces of glass, mica and platinum", Journal of the American Chemical society,  Vol. 40, No. 9, (1918), 1361-1403.

11.   Zeldowitsh, J., " Acta phisicochimica urss",  Vol. 1, (1935).

12.   Brunauer, S., Emmett, P.H. and Teller, E., "Adsorption of gases in multimolecular layers", Journal of the American Chemical society,  Vol. 60, No. 2, (1938), 309-319.

13.   Terzyk, A.P., Gauden, P.A. and Kowalczyk, P., "What kind of pore size distribution is assumed in the dubinin–astakhov adsorption isotherm equation?", Carbon,  Vol. 40, No. 15, (2002), 2879-2886.

14.   Dubinin, M.M., Gregg, S.J., Sing, K.S.W. and and Stoeckli, H.F., "Characterisation of porous solids", London, England, The Society of Chemical Industry, (1979).

15.   Dubinin, M. and Radushkevich, L., "Equation of the characteristic curve of activated charcoal", Chem. Zentr,  Vol. 1, No. 1, (1947), 875-884.

16.   Carvalho, A., Mestre, A., Pires, J., Pinto, M. and Rosa, M.E., "Granular activated carbons from powdered samples using clays as binders for the adsorption of organic vapours", Microporous and Mesoporous Materials,  Vol. 93, No. 1, (2006), 226-231.

17.   Gaspard, S., Altenor, S., Dawson, E.A., Barnes, P.A. and Ouensanga, A., "Activated carbon from vetiver roots: Gas and liquid adsorption studies", Journal of Hazardous Materials,  Vol. 144, No. 1, (2007), 73-81.

18.   Olivares-Marín, M., Fernández-González, C., Macías-García, A. and Gómez-Serrano, V., "Preparation of activated carbon from cherry stones by chemical activation with zncl< sub> 2</sub>", Applied Surface Science,  Vol. 252, No. 17, (2006), 5967-5971.

19.   Barrett, E.P., Joyner, L.G. and Halenda, P.P., "The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms", Journal of the American Chemical Society,  Vol. 73, No. 1, (1951), 373-380.

20.   Grün, M., Unger, K.K., Matsumoto, A. and Tsutsumi, K., "Novel pathways for the preparation of mesoporous mcm-41 materials: Control of porosity and morphology", Microporous and Mesoporous Materials,  Vol. 27, No. 2, (1999), 207-216.

21.   Ciesla, U. and Schüth, F., "Ordered mesoporous materials", Microporous and Mesoporous Materials,  Vol. 27, No. 2, (1999), 131-149.

22.   Kruk, M., Jaroniec, M. and Sayari, A., "Adsorption study of surface and structural properties of mcm-41 materials of different pore sizes", The Journal of Physical Chemistry B,  Vol. 101, No. 4, (1997), 583-589.

23.   Jaroniec, M. and Solovyov, L.A., "Assessment of ordered and complementary pore volumes in polymer-templated mesoporous silicas and organosilicas", Chem. Commun.,  No. 21, (2006), 2242-2244.

24.   Kim, B.-J., Bae, K.-M. and Park, S.-J., "A study of the optimum pore structure for mercury vapor adsorption", Bulletin of the Korean Chemical Society,  Vol. 32, No. 5, (2011), 1507-1510.

25.   Jomekian, A., Pakizeh, M., Shafiee, A.R. and Mansoori, S.A.A., "Fabrication or preparation and characterization of new modified mcm-41/psf nanocomposite membrane coated by pdms", Separation and Purification Technology,  Vol. 80, No. 3, (2011), 556-565.

26.   Chen, H. and and Wang, Y.C., Cermics Inernational Vol. 28, (2002), 541.

27.   Lin, H.P., Tang, C.Y. and Lin, C.Y., "Detailed structural characterizations of sba15 and mcm41 mesoporous silicas on a highresolution transmission electron microscope", Journal of the Chinese Chemical Society,  Vol. 49, No. 6, (2002), 981-988.

28.   Sing, K.S., "Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (recommendations 1984)", Pure and applied chemistry,  Vol. 57, No. 4, (1985), 603-619.

29.   Mitropoulos, A.C. and "Capillarity", Journal of Engineering Science and Technology Review,  Vol. 2, (2009), 28.

30.   Inoue, S., Hanzawa, Y. and Kaneko, K., "Prediction of hysteresis disappearance in the adsorption isotherm of n2 on regular mesoporous silica", Langmuir,  Vol. 14, No. 11, (1998), 3079-3081.

31.   Neimark, A.V., Ravikovitch, P.I. and Vishnyakov, A., "Adsorption hysteresis in nanopores", Physical Review E,  Vol. 62, No. 2, (2000), R1493.

32.   Gregg, S. and Sing, K.S., "Adsorption, surface area, and porosity",  (1983).

33.   Tarazona, P., "Free-energy density functional for hard spheres", Physical Review A,  Vol. 31, No. 4, (1985), 2672.

34.   Klomkliang, N., Do, D. and Nicholson, D., "On the hysteresis and equilibrium phase transition of argon and benzene adsorption in finite slit pores: Monte carlo vs.Bin-Monte Carlo", Chemical Engineering Science,  Vol. 87, (2013), 327-337.   





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir