Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 27, No. 10 (October 2014) 1527-1536   

downloaded Downloaded: 196   viewed Viewed: 2297

  EMPLOYING INTERNAL FLEXIBLE WALL AS MASS ABSORBER IN TANKS SUBJECTED TO HARMONIC EXCITATIONS
 
J. Mousavi and S. Tariverdilo
 
( Received: December 24, 2013 – Accepted: June 26, 2014 )
 
 

Abstract    The possibility of employing internal wall as mass absorber in rectangular water storage tanks subjected to harmonic ground motion excitation is investigated in this paper. Internal walls are used in these tanks usually for service performance purposes, which could be used as mass absorber to control seismic demand on tank's exterior walls. Derivation of the response of the coupled system including rigid external walls, flexible internal wall and fluid field is in frequency domain. The responses of the tank are evaluated subjected to harmonic excitations. By tuning the dynamic behavior of the tank and the sloshing liquid by changing the mass and stiffness of internal flexible wall, it is shown that wave elevation and water pressure on external rigid walls can be significantly reduced.

 

Keywords    Seismic demand; Mass absorber; Fluid-structure interaction; water storage tanks.

 

چکیده    در اين مقاله امکان بکارگيري جاذب جرم براي کنترل پاسخ ديناميکي آب در مخازن ذخيره‌‌ي آب مستطيلي شکل مورد بررسي قرار مي‌گيرد. اين مخازن اغلب بدليل نيازهای مربوط به کاربری دارای ديواره داخلی ميباشند که ميتوان از اين ديوار انعطاف پذير بعنوان جاذب‌جرم برای کنترل رفتار مخزن استفاده نمود. پاسخ سيستم در بر گيرنده اندرکنش ديواره‌هاي صلب خارجي، ديواره‌ي انعطاف‌پذير داخلي و سيال در حوزه‌ي فرکانس استخراج شده و پاسخ مخزن به تحريکات هارمونيکي مختلف مورد ارزيابي قرار گرفته است. نتايج نشانگر آنستکه با تنظيم جرم و سختي ديواره‌ي انعطاف‌پذير داخلي در يک فرکانس مشخص ميتوان پارامترهای پاسخ سيستم شامل ارتفاع موج آب و فشار آب بر روي ديواره‌ي صلب خارجي را برای محدوده فرکانسی که تحريکات زلزله دارای محتوای فرکانسی عمده در آن هستند بنحو محسوسی کاهش داد.

References   

1.     Housner, G.W., "Dynamic pressures on accelerated fluid containers", Bulletin of the Seismological Society of America,  Vol. 47, No. 1, (1957), 15-35.

2.     Housner, G.W., "The dynamic behavior of water tanks", Bulletin of the seismological society of America,  Vol. 53, No. 2, (1963), 381-387.

3.     Silverman, S. and Abramson, H.N., "Damping of liquid motions and lateral sloshing", NASA Special Publication,  Vol. 106, (1966), 105.

4.     Stephens, D.G., "Flexible baffles for slosh damping", Journal of Spacecraft and Rockets,  Vol. 3, No. 5, (1966), 765-766.

5.     Panigrahy, P., Saha, U. and Maity, D., "Experimental studies on sloshing behavior due to horizontal movement of liquids in baffled tanks", Ocean Engineering,  Vol. 36, No. 3, (2009), 213-222.

6.     Hasheminejad, S.M., Mohammadi, M. and Jarrahi, M., "Liquid sloshing in partly-filled laterally-excited circular tanks equipped with baffles", Journal of Fluids and Structures,  Vol. 44, No., (2014), 97-114.

7.     Wu, C.-H., Faltinsen, O.M. and Chen, B.-F., "Numerical study of sloshing liquid in tanks with baffles by time-independent finite difference and fictitious cell method", Computers & Fluids,  Vol. 63, No., (2012), 9-26.

8.     Akyildiz, H., Unal, N.E. and Aksoy, H., "Experimental investigation of the effects of the ring baffles on liquid sloshing in a rigid cylindrical tank", Ocean Engineering,  Vol., No., (2013), 190-197.

9.     Takabatake, D., Sawada, S., Yoneyama, N. and Miura, M., "Sloshing reduction effect of splitting wall in cylindrical tank", in The 14th World Conference on Earthquake Engineering” October. (2008), 12-17.

10.   Bhavya, C., Gomez, S.M. and Krishnakumar, R., "Design and fe analysis of anti-slosh baffles for fourth stage of pslv", Bonfring International Journal of Industrial Engineering and Management Science,  Vol. 3, No. 2, (2013), 57-62.

11.   Yang, J.Y., "Dynamic behavior of fluid-tank systems", (1976).

12.   Minowa, C., "Dynamic analysis for rectangular water tanks", Recent Advances in Lifeline Earthquake Engineering in Japan,  Vol., No., (1980), 135-142.

13.   Minowa, C. and "", "Experimental studies of seismic properties of various type water tanks", Proc., 8th WCEE,  Vol., No., (1984), 945-952.

14.   Ghaemmaghami, A. and Kianoush, M., "Effect of wall flexibility on dynamic response of concrete rectangular liquid storage tanks under horizontal and vertical ground motions", Journal of Structural Engineering,  Vol. 136, No. 4, (2009), 441-451.

15.   Hashemi, S., Saadatpour, M. and Kianoush, R., "Dynamic behavior of flexible rectangular liquid storage tanks subjected to seismic ground motion"15th World Conference on Earthquake Engineering, Lisbon, Portuguese, (2012).,

16.   Nicolici, S. and Bilegan, R., "Fluid structure interaction modeling of liquid sloshing phenomena in flexible tanks", Nuclear Engineering and Design,  Vol. 258, (2013), 51-56.

17.   Cakir, T. and Livaoglu, R., "Fast practical analytical model for analysis of backfill-rectangular tank-fluid interaction systems", Soil Dynamics and Earthquake Engineering,  Vol. 37, (2012), 24-37.

18.   Tariverdilo, S., Shabani, R. and Salarieh, H., "Effect of flexural and membrane stiffnesses on the analysis of floating roofs", International Journal of Engineering-Transactions A: Basics,  Vol. 23, No. 1, (2009), 57.

19.   Shabani, R., "Stress patterns in single deck floating roofs subjected to ground motion accelerations", International Journal of Engineering-Transactions C: Aspects,  Vol. 26, No. 12, (2013), 1495.

20.   Mirbagheri, S., Rajaee, T. and Mirzaee, F., "Solution of wave equations near seawalls by finite element method", International Journal of Engineering Transactions A Basics,  Vol. 21, No. 1, (2008), 1.

21.   Frahm, H. and ‘‘, "Device for damping vibrations of bodies", U.S. Patent,  (1909).

22.   Ormondroyd, J., "Theory of the dynamic vibration absorber", Transaction of the ASME,  Vol. 50, (1928), 9-22.

23.   Liu, M.-Y., Chiang, W.-L., Hwang, J.-H. and Chu, C.-R., "Wind-induced vibration of high-rise building with tuned mass damper including soil–structure interaction", Journal of Wind Engineering and Industrial Aerodynamics,  Vol. 96, No. 6, (2008), 1092-1102.

24.   Chen, S. and Cai, C., "Coupled vibration control with tuned mass damper for long-span bridges", Journal of Sound and Vibration,  Vol. 278, No. 1, (2004), 449-459.

25.   Kwon, H.-C., Kim, M.-C. and Lee, I.-W., "Vibration control of bridges under moving loads", Computers & Structures,  Vol. 66, No. 4, (1998), 473-480.

26.   Maes, J. and Sol, H., "A double tuned rail damper—increased damping at the two first pinned–pinned frequencies", Journal of Sound and Vibration,  Vol. 267, No. 3, (2003), 721-737.

27.   Anderson, J.G., "Liquid sloshing in containers: Its utilisation and control", Victoria University of Technology,  (2000),

28.   Gradinscak, M., Semercigil, S. and Turan, Ö., A sloshing absorber with a flexible container, in Structural dynamics, volume 3., Springer. (2011 ) 315-322.

29.   Montero de Espinosa, F. and Gallego-Juarez, J., "On the resonance frequencies of water-loaded circular plates", Journal of Sound and Vibration,  Vol. 94, No. 2, (1984), 217-222.

30.   Amabili, M., Dalpiaz, G. and and Santolini, C., "Free edge circular plates vibrating in water, modal analysis", The International Journal of Analytical and Experimental Modal Analysis,  Vol. 10, No. 1, (1995), 187-202.

31.   Meirovitch, L., "Principles and techniques of vibrations, Prentice Hall New Jersey,  Vol. 1,  (1997).

32.   Ibrahim, R.A., "Liquid sloshing dynamics: Theory and applications, Cambridge University Press,  (2005).

33.   Chopra, A.K., "Dynamics of structures: Theory and applications to earthquake engineering", 4th Edition, Prentice Hall, Englewood Cliffs, New Jersey,  Vol., No., (2012).

34.   Building Seismic Safety Council, B., "Nehrp recommended provisions for seismic regulations for new buildings and other structures", Report FEMA-450 (Provisions), Federal Emergency Management Agency (FEMA), Washington,  (2003).





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir