Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 27, No. 10 (October 2014) 1519-1526   

downloaded Downloaded: 145   viewed Viewed: 1983

  A PROCEDURE FOR PREPARATION OF SEMI-ACTIVATED CARBON FIBER WITHOUT ANY TREATMENT UNDER HIGH TEMPERATURE
 
N. Saeidi and M. N. Lotfollahi
 
( Received: February 23, 2014 – Accepted: May 22, 2014 )
 
 

Abstract    A procedure for preparation of semi-activated carbon fiber (SACF) without any treatment under high temperature was proposed. The first step of the procedure is coating of an inorganic fiber (E-glass fiber) by an adsorbent mixture including powder activated carbon, methyl cellulose and water. In this work a set of experiments was performed to attain appropriate adsorbent mixture for good quality of coating. The best composition was investigated based on the adsorption property and the mechanical property of the coated fibers. The results showed that an adsorbent mixture containing 3 wt% or 4 wt% of methyl cellulose, and 15-20 wt% of activated carbon represents good quality of coating. The adsorption property of the coated fibers was studied by determination of iodine number for the adsorbent mixture. In this work the weight percent of the coated adsorbent mixture on the fibers were also obtained and reported. The mechanical property was examined by flowing of air through a packing of the coated fibers. BET surface area of the samples also was examined and compared to other reported works. The results showed that the surfaces area of the samples were eighter equal to or higher than other disclosed works. The weight loss of the coated fibers packing was measured after 20, 40 and 60 min flowing of air through a packing of the SACFs. The weight loss in all cases was very low (up to 0.001 gr); thus good quality of coating can be inferred.

 

Keywords    Activated carbon fiber, Organic binder, Iodine number, Adsorption property, Mechanical property

 

چکیده    یک رویه برای تهیه شبه الیاف کربن فعال بدون نیاز به عملیات حرارتی در دمای بالا پیشنهاد شده است. اولین مرحله از این رویه پوشش دادن الیاف غیر آلی (فایبر گلس) به وسیله مخلوطی از کربن فعال پودری، متیل سلولز و آب است. در این کار، یک سری آزمایش برای رسیدن به مخلوط جاذب مناسب برای پوشش دهی خوب، انجام شد. بهترین ترکیب درصد مواد تشکیل دهنده مخلوط بر اساس خصوصیات جذب و مکانیکی الیاف پوشش داده شده، بررسی شد. نتایج نشان دادند که یک مخلوط جاذب محتوی 3 یا 4 درصد وزنی از متیل سلولز و 15 تا 20 درصد وزنی از کربن فعال پودری، منجر به رسیدن به کیفیت پوشش دهی مناسب می شوند. خصوصیات جذب الیاف پوشش داده شده با تعیین کردن عدد یدی مخلوط جذب بررسی شد. در این کار، درصد وزنی مخلوط جاذب پوشش داده شده بر روی الیاف نیز بررسی و گزارش شد. سطح فعال بی ای تی نمونه های کار حاضر نیز بررسی شده و با کار های دیگر مقایسه شد. نتایج نشان دادند که سطح فعال نمونه های کار حاضر یا در حدود سطح فعال الیاف سنتز شده در کار های دیگر اند یا از آن ها بالاتر می باشند. خصوصیات مکانیکی با جریان دادن هوا از درون بستری از الیاف پوشش داده شده بررسی شد. وزن از دست رقته الیاف پوشش داده شده بعد از 20، 40 و 60 دقیقه هوادهی از درون بستر الیاف پوشش داده شده، اندازه گیری شد. وزن از دست رفته در همه نمونه ها بسیار کم و در حد هزارم گرم بود، پس می توان نتیجه گرفت که پوشش دهی به خوبی انجام شده است.

References   

1.     Bansal, R.C., Donnet, J.-B. and Stoeckli, F., "Active carbon, M. Dekker,  (1988).

2.     R.F., R. and and Sepulveda E.A., "Handbook of surfaces and interfaces of materials, biomolecules, biointerfaces and applications, San diego, academic press,  Vol. 5,  (2001).

3.     Ninković, M.B., Petrović, R.D. and Laušević, M.D., "Removal of organochlorine pesticides from water using virgin and regenerated granular activated carbon", Journal of the Serbian Chemical Society,  Vol. 75, No. 4, (2010), 565-573.

4.     Anbia, M. and Ghaffari, A., "Modified nanoporous carbon material for anionic dye removal from aqueous solution", International Journal of Engineering-Transactions B: Applications,  Vol. 25, No. 4, (2012), 259.

5.     Radnia, H., Ghoreyshi, A., Younesi, H., Masomi, M. and Pirzadeh, K., "Adsorption of fe (ii) from aqueous phase by chitosan: Application of physical models and artificial neural network for prediction of breakthrough", International Journal of Engineering-Transactions B: Applications,  Vol. 26, No. 8, (2013), 845.

6.     Zhang, X., Zhang, Y., Wang, S., Zhang, J. and Zhou, W., "Effect of activation agents on the surface chemical properties and desulphurization performance of activated carbon", Science China Technological Sciences,  Vol. 53, No. 9, (2010), 2515-2520.

7.     El-Hendawy, A.-N.A., Samra, S. and Girgis, B., "Adsorption characteristics of activated carbons obtained from corncobs", Colloids and Surfaces A: Physicochemical and Engineering Aspects,  Vol. 180, No. 3, (2001), 209-221.

8.     Kim, J.W., Sohn, M.H., Kim, D.S., Sohn, S.M. and and Kwon, Y.S., "Production of granular activated carbon from waste walnut shell and its adsorption characteristics for cu2+ ion", Journal of Hazardous Material,  Vol. 85, No., (2001), 301-312.

9.     Chai, X., Jia, J., Sun, T., Wang, Y. and Liao, L., "Application of a novel cold activated carbon fiber-solid phase microextraction for analysis of organochlorine pesticides in soil", Journal of Environmental Science and Health Part B,  Vol. 42, No. 6, (2007), 629-634.

10.   Carvalho, A., Mestre, A., Pires, J., Pinto, M. and Rosa, M.E., "Granular activated carbons from powdered samples using clays as binders for the adsorption of organic vapours", Microporous and Mesoporous Materials,  Vol. 93, No. 1, (2006), 226-231.

11.   Pinto, M.L., Pires, J., Carvalho, A.P., de Carvalho, M.B. and Bordado, J.C., "Characterization of adsorbent materials supported on polyurethane foams by nitrogen and toluene adsorption", Microporous and Mesoporous Materials,  Vol. 80, No. 1, (2005), 253-262.

12.   Son, G. and Lee, S., "Application of micellar enhanced ultrafiltration and activated carbon fiber hybrid processes for lead removal from an aqueous solution", Korean Journal of Chemical Engineering,  Vol. 28, No. 3, (2011), 793-799.

13.   Gadkaree, k.P.M. and joseph, F. Washington, D.C.: U. S. Patent and Trademark Office. (1996)

14.   . Dana C., D., Ronald, E.J. and Streicher, P. Washington, D.C.: U.S. Patent and Trademark Office. (1995)

15.   Eom, S.-Y. and Ryu, S.-K., "Properties of differently shaped activated carbon fibers", Korean Journal of Chemical Engineering,  Vol. 27, No. 5, (2010), 1592-1595.

16.   Lim, J.-W., Choi, Y., Yoon, H.-S., Park, Y.-K., Yim, J.-H. and Jeon, J.-K., "Extrusion of honeycomb monoliths employed with activated carbon-ldpe hybrid materials", Journal of Industrial and Engineering Chemistry,  Vol. 16, No. 1, (2010), 51-56.

17.   Donnet, J.-B., "Carbon fibers, CRC Press,  (1998).

18.   Kang, T.J., Shin, S.J., Jung, K. and Park, J.K., "Mechanical, thermal and ablative properties of interply continuous/spun hybrid carbon composites", Carbon,  Vol. 44, No. 5, (2006), 833-839.

19.   Li, L., Quinlivan, P.A. and Knappe, D.R., "Effects of activated carbon surface chemistry and pore structure on the adsorption of organic contaminants from aqueous solution", Carbon,  Vol. 40, No. 12, (2002), 2085-2100.

20.   Vilaplana-Ortego, E., Alcañiz-Monge, J., Cazorla-Amorós, D. and Linares-Solano, A., "Activated carbon fibre monoliths", Fuel Processing Technology,  Vol. 77, No., (2002), 445-451.

21.   Economy, J., Li, E.Y. and Murty.Washington, D.C.: U.S. Patent and Trademark Office. (1975)

22.   Im, J.S., Jang, J.-S. and Lee, Y.-S., "Synthesis and characterization of mesoporous electrospun carbon fibers derived from silica template", Journal of Industrial and Engineering Chemistry,  Vol. 15, No. 6, (2009), 914-918.

23.   Kim, C., Choi, Y.-O., Lee, W.-J. and Yang, K.-S., "Supercapacitor performances of activated carbon fiber webs prepared by electrospinning of pmda-oda poly (amic acid) solutions", Electrochimica Acta,  Vol. 50, No. 2, (2004), 883-887.

24.   Park, S.-J. and Kim, K.-D., "Influence of activation temperature on adsorption characteristics of activated carbon fiber composites", Carbon,  Vol. 39, No. 11, (2001), 1741-1746.

25.   Oya, A., Yoshida, S., Abe, Y., Iizuka, T. and Makiyama, N., "Antibacterial activated carbon fiber derived from phenolic resin containing silver nitrate", Carbon,  Vol. 31, No. 1, (1993), 71-73.

26.   Zaini, M.A.A., Amano, Y. and Machida, M., "Adsorption of heavy metals onto activated carbons derived from polyacrylonitrile fiber", Journal of Hazardous Materials,  Vol. 180, No. 1, (2010), 552-560.

27.   Giraldo, L., Ladino, Y., Pirajánc, J. and Rodríguez, M., "Synthesis and characterization of activated carbon fibers from kevlar", Eclética Química,  Vol. 32, No. 4, (2007), 55-62.

28.   Economy, J., Michael, M.A. and Mangun, C.L., " in Proceedings of the 89th annual Meeting of Air and Waste Management Association, Nashville, Tennessee U. S. (1996).

29.   Jeong, A.Y., Cho, D.H., Lee, S.H. and Kiln, D.P., Journal of the Korean Ceramic Society,  Vol. 36, No., (1999), 756-770

30.   Baek, I., "Preparation of semi-activated carbon fibers", Korean Journal of Chemical Engineering,  Vol. 17, No. 5, (2000), 553-558.

31.   ASTM D 4607-94 Philadelphia, P.A.C.o.S. (2006).

32.   Barrett, E.P., Joyner, L.G. and Halenda, P.P., "The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms", Journal of the American Chemical society,  Vol. 73, No. 1, (1951), 373-380.

33.   Moreno-Castilla, C. and Pérez-Cadenas, A.F., "Carbon-based honeycomb monoliths for environmental gas-phase applications", Materials,  Vol. 3, No. 2, (2010), 1203-1227.

34.   . Yan, Z.Q., McCue, J.C. and Tolles, E.D. Washington, D.C.: U.S. Patent and Trademark Office. (1996)

35.   Brunauer, S., Emmett, P.H. and Teller, E., "Adsorption of gases in multimolecular layers", Journal of the American Chemical society,  Vol. 60, No. 2, (1938), 309-319.

36.   Miller, J.R.: Washington, D.C.: U.S. Patent and Trademark Office, (1998)  





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir