Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 27, No. 10 (October 2014) 1601-1610   

downloaded Downloaded: 142   viewed Viewed: 1861

  DESIGNING A META-HEURISTIC ALGORITHM BASED ON A SIMPLE SEEKING LOGIC
 
S. Poursafary, N. Javadian and R. Tavakkoli-Moghaddam
 
( Received: April 19, 2013 – Accepted: June 26, 2014 )
 
 

Abstract    Nowadays, in majority of academic contexts, it has been tried to consider the highest possible level of similarities to the real world. Hence, most of the problems have complicated structures. Traditional methods for solving almost all of the mathematical and optimization problems are inefficient. As a result, meta-heuristic algorithms have been employed increasingly during recent years. In this study, a new algorithm will be introduced for solving continuous mathematical problems. The basis of this algorithm is based on the group seeking logic. In this logic, the seeking region and the seekers located inside are divided into several sections and they will seek in that special area. In order to assess the performance of this algorithm, from the available samples in articles, the most visited algorithms have been employed. The gained results show the advantage of SEA in comparison to these algorithms. In the end, a mathematical problem has been designed, which is unlike the structure of meta-heuristic algorithms. All the prominent algorithms have been applied to solve this problem, and none of them was able to solve.

 

Keywords    Evolutionary Algorithms, Meta-heuristic algorithms Global optimization, Seeker Evolutionary Algorithm (SEA), Multiple global minima

 

چکیده    امروزه در اکثر زمینه های علمی سعی بر این است که بیشترین شباهت با دنیای واقعی در مسائل لحاظ شود.از این رو اکثر مسائل دارای ساختار پیچیده هستند.روش های سنتی برای حل اکثر مسائل ریاضی و بهینه سازی ناکارآمد هستند. به همین علت استفاده از الگوریتم های فراابتکاری در سال های اخیر رشد چشم گیری داشته است. در این تحقیق به معرفی یک الگوریتم جدید برای حل مسائل ریاضی پیوسته پرداخته خواهد شد. مبنای این الگوریتم بر اساس منطق جستجو گروهی است. در این منطق ناحیه جستجو وجستجوگرها به چند قسمت تقسیم می شوند و به جستجو در آن ناحیه می پردازند. برای سنجش عملکرد این الگوریتم از مثال های موجود در مقالات پر رجوع ترین الگوریتم ها استفاده شده است. نتایج بدست امده نشان دهنده برتری SEA بر این الگوریتم ها است. در انتها نیز یک مساله ریاضی طراحی شده است که بر خلاف ساختار الگوریتم های فراابتکاری است. تمام الگوریتم های مشهور برای حل این مساله به کار گرفته شده است ولی هیچ کدام قادر به حل آن نمی باشند.

References   

 

1.     Melanie, M., "An introduction to genetic algorithms", Cambridge, Massachusetts London, England, Fifth printing,  Vol. 3, (1999).

2.     Tavakkoli-Moghaddam R., Jolai F., Khodadadeghan Y. and Haghnevis M., "A mathematical model of a multi-criteria parallel machine scheduling problem: A genetic algorithm", International Journal of Engineering,  Vol. 19, No. 1, (2006), 79-86.

3.     Tang, P.-H. and Tseng, M.-H., "Adaptive directed mutation for real-coded genetic algorithms", Applied Soft Computing,  Vol. 13, No. 1, (2013), 600-614.

4.     Kirkpatrick, S., Gelatt, C.D. and Vecchi, M.P., "Optimization by simmulated annealing", Science,  Vol. 220, No. 4598, (1983), 671-680.

5.     Dorigo M. and Caro G.D., "Ant colony optimization: A new meta-heuristic", in in: Proc. of the Congress on Evolutionary Computation, Washington, DC, IEEE Press, Piscataway, NJ. (1999), 1470-1477.

6.     Tavakkoli-Moghaddam, R., Makui, A., Khazaei, M. and Ghodratnama, A., "Solving a new bi-objective model for a cell formation problem considering labor allocation by multi-objective particle swarm optimization", International Journal of Engineering-Transactions A: Basics,  Vol. 24, No. 3, (2011), 249-255.

7.     Chen, D. and Zhao, C., "Particle swarm optimization with adaptive population size and its application", Applied Soft Computing,  Vol. 9, No. 1, (2009), 39-48.

8.     Atashpaz-Gargari, E. and Lucas, C., "Imperialist competitive algorithm: An algorithm for optimization inspired by imperialistic competition", in Evolutionary Computation,. CEC. IEEE Congress on, IEEE. (2007), 4661-4667.

9.     Rashedi, E., Nezamabadi-Pour, H. and Saryazdi, S., "Gsa: A gravitational search algorithm", Information Sciences,  Vol. 179, No. 13, (2009), 2232-2248.

10.   Karaboga, D. and Akay, B., "A comparative study of artificial bee colony algorithm", Applied Mathematics and Computation,  Vol. 214, No. 1, (2009), 108-132.

11.   Pham, D., Ghanbarzadeh, A., Koc, E., Otri, S., Rahim, S. and Zaidi, M., "The bees algorithm-a novel tool for complex optimisation problems", in Proceedings of the 2nd Virtual International Conference on Intelligent Production Machines and Systems (IPROMS). (2006), 454-459.

12.   Karaboga, D. and Akay, B., "Artificial bee colony (abc), harmony search and bees algorithms on numerical optimization", in Innovative Production Machines and Systems Virtual Conference., (2009).

13.   Geem, Z.W., Kim, J.H. and Loganathan, G., "A new heuristic optimization algorithm: Harmony search", Simulation,  Vol. 76, No. 2, (2001), 60-68.

14.   Yang, X.-S. and Deb, S., "Engineering optimisation by cuckoo search", International Journal of Mathematical Modelling and Numerical Optimisation,  Vol. 1, No. 4, (2010), 330-343.

15.   Yang, X.-S., Firefly algorithms for multimodal optimization, in Stochastic algorithms: Foundations and applications., Springer. (2009). 169-178.

16.   Yang, X.-S., Firefly algorithm, levy flights and global optimization, in Research and development in intelligent systems xxvi., Springer (2010). 209-218.

17.   Yang, X.-S., A new metaheuristic bat-inspired algorithm, in Nature inspired cooperative strategies for optimization (nicso)., Springer, (2010). 65-74.

18.   Rajabioun, R., "Cuckoo optimization algorithm", Applied Soft Computing,  Vol. 11, No. 8, (2011), 5508-5518.

19.   Alikhani, M.G., Javadian, N. and Tavakkoli-Moghaddam, R., "A novel hybrid approach combining electromagnetism-like method with solis and wets local search for continuous optimization problems", Journal of Global Optimization,  Vol. 44, No. 2, (2009), 227-234.

20.   Ghodratnama, A., Tavakkoli-Moghaddam, R. and Baboli, A., "Comparing three proposed meta-heuristics to solve a new p-hub location-allocation problem", International Journal of Engineering-Transactions C: Aspects,  Vol. 26, No. 9, (2013), 1043.

21.   Molga, M. and Smutnicki, C., "Test functions for optimization needs", Test Functions for Optimization Needs,  Vol., No., (2005).





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir