Abstract




 
   

IJE TRANSACTIONS A: Basics Vol. 27, No. 10 (October 2014) 1619-1626   

downloaded Downloaded: 147   viewed Viewed: 1836

  COMPARISON OF PURITY AND PROPERTIES OF HYDROXYL CARBONATE APATITE EXTRACTED FROM NATURAL THIGH BONE BY DIFFERENT PHYSIO-CHEMICAL METHODS
 
M. Kalantar and A. Y. A. Fazel
 
( Received: February 16, 2014 – Accepted: May 22, 2014 )
 
 

Abstract    New approaches to extracting natural hydroxyl carbonate apatite from bio waste of bovine bones cortical femur have been developed. To extract pure and natural bio ceramics, three different treatments have been applied: 1-Calcination heat treatment at temperature of 700 , 2-alkaline hydrothermal at temperature of 275 and 3-Pressurized low polarity water at temperature of 250 . Raw bovine bone and obtained apatite have been characterized by Fourier-transform infrared spectroscopy, X-ray diffraction, differential thermal and thermal gravity analyzer and fluorescent microscopy and scanning electron microscopy. The results indicate that all the proposed processes have this ability to produce pure natural hydroxyl carbonate apatite from bio-waste bovine bones. In calcinations heat treatment process, mainly all the organic component such collagen was removed at temperature of 600 and a carbonate apatite was obtained. The presence of carbonate groups led to increasing the biocompatibility and will be preferable for orthopedic and medical usages. At The degree of crystallization of powders is increased by increasing of temperature from 250°C for pressurized low polarity water processing to 600°C for calcinations treatment. Growth behavior and adhesion of cultured umbilical cord mesenchymal stem cells on the surface of 2-D hydroxyapatite scaffolds derived by these three different methods have been investigated. The results show that the stem cells could survive and attach on surface of derived carbonated hydroxyapatite scaffolds and demonstrate no negative response.

 

Keywords    Hydroxyl Carbonate Apatite, Bovine bone, Calcinations, Alkaline and pressurized low polarity water hydrothermal.

 

چکیده    خانواده ترکیبات بر پایه آپاتیت دارای قابلیت های متعددی همچون زیست سازگاری، زیست فعالی، استخوان سازی، سمی نبودن و همچنین ایجاد خاصیت غیر تدافعی در بدن می باشند بطوریکه باعث شده است این ماده به عنوان یک بیوسرامیک در کاربردهای مختلف اورتوپدی و جراحی پیوند استخوان به عنوان جایگزین، ترمیم کننده و انواع اتصالات به طور گسترده ای مورد استفاده قرار گیرد. استخوان طبیعی موجودات زنده یکی از منابع مهم و در دسترس بوده که می تواند برای تولید انواع ترکیبات آپاتیت مورد استفاده قرار گیرد. در این کار تحقیقاتی، هیدروکسی کربنات آپاتیت کربناته طبیعی از استخوان زائد گاو از سه فرآیند متفاوت عملیات حرارتی کلسینه (در دمای °C ۷۰۰)، تجزیه هیدروترمال قلیایی (°C ۲۷۵) و تجزیه هیدروترمال آبی (°C ۲۵۰) استخراج شده است. نمونه هایی از پودر خام استخوان مورد آنالیز حرارتی افتراقی (DTA) و آنالیز حرارتی وزنی (TG) قرار گرفته است. پودر بدست آمده از فرآیند های فوق مورد شناسایی توسط آنالیز طیف سنجی مادون قرمز (FTIR)، پراش اشعه ایکس (XRD) و مشاهدات میکروسکوپ الکترونی روبشی (SEM) قرار گرفته است. برای ارزیابی زیست فعالی پودر بدست آمده آزمایشات کشت سلولی در محیط محلول شبیه سازی شده بدن انجام گرفت. نتایج بدست آمده همگی دلالت بر قابلیت خوب حذف ترکیبات آلی از جمله کٌلاژن های در درون استخوان گاو و تولید هیدروکسی کربنات آپاتیت طبیعی میکرو و نانو ساختار با بازدهی تا ۶۰% از سه روش فوق بخصوص روش هیدروترمال آبی دارند. با انجام عملیات حرارتی کلسیناسیون عموماً تمام ترکیبات آلی تا دمای°C ۶۰۰ از ساختار خارج شده و گروه کربنات در ساختار کریستالی در کنار یون (OH-) باقی می ماند. با افزایش دما در بالاتر از °C ۹۰۰ گروه کربنات به طور کامل از ساختار خارج گردیده و هیدروکسی آپاتیت خالص کریستالی حاصل می شود. نتایج کشت سلولی نشان دهنده قابلیت بالاتر زیست فعالی برای آپاتیت کربناته نسبت به هیدروکسی آپاتیت از لحاظ بیولوژیکی برای کاربردهای اورتوپدی و بیوسرامیکی می باشد بطوریکه فیلم رسوبی چسبنده و پایدار بر روی داربست هیدرو آپاتیت کربناته شکل می گیرد.

References   

 

1.     Hulbert, S., Bokros, J., Hench, L., Wilson, J. and Heimke, G., "Ceramics in clinical applications, past, present and future", High Tech Ceramics.(Part A), (1986), 189-213.

2.     Grauer, J.N., Beiner, J.M., Kwon, B. and Vaccaro, A.R., "The evolution of allograft bone for spinal applications", Orthopedics,  Vol. 28, No. 6, (2005), 573-579.

3.     Turek, S.L., "Orthopaedics: Principles and their application, Lippincott Philadelphia,  (1984).

4.     Best, S., Porter, A., Thian, E. and Huang, J., "Bioceramics: Past, present and for the future", Journal of the European Ceramic Society,  Vol. 28, No. 7, (2008), 1319-1327.

5.     Finkemeier, C.G., "Bone-grafting and bone-graft substitutes", The Journal of Bone & Joint Surgery,  Vol. 84, No. 3, (2002), 454-464.

6.     Elliott, J.C., "Structure and chemistry of the apatites and other calcium orthophosphates", Studies in organic chemistry, (1994).

7.     Landi, E., Celotti, G., Logroscino, G. and Tampieri, A., "Carbonated hydroxyapatite as bone substitute", Journal of the European Ceramic Society,  Vol. 23, No. 15, (2003), 2931-2937.

8.     Ramay, H.R. and Zhang, M., "Biphasic calcium phosphate nanocomposite porous scaffolds for load-bearing bone tissue engineering", Biomaterials,  Vol. 25, No. 21, (2004), 5171-5180.

9.     Guizzardi, S., Montanari, C., Migliaccio, S., Strocchi, R., Solmi, R., Martini, D. and Ruggeri, A., "Qualitative assessment of natural apatite in vitro and in vivo", Journal of Biomedical Materials Research,  Vol. 53, No. 3, (2000), 227-234.

10.   Vaccaro, A.R., "The role of the osteoconductive scaffold in synthetic bone graft", Orthopedics,  Vol. 25, No. 5, (2002), 571-578.

11.   Fleet, M.E. and Liu, X., "Coupled substitution of type a and b carbonate in sodium-bearing apatite", Biomaterials,  Vol. 28, No. 6, (2007), 916-926.

12.   Barrere, F., van Blitterswijk, C.A. and de Groot, K., "Bone regeneration: Molecular and cellular interactions with calcium phosphate ceramics", International Journal of Nanomedicine,  Vol. 1, No. 3, (2006), 317-332.

13.   Murugan, R., Rao, K.P. and Kumar, T.S., "Heat-deproteinated xenogeneic bone from slaughterhouse waste: Physico-chemical properties", Bulletin of Materials Science,  Vol. 26, No. 5, (2003), 523-528.

14.   Wenz, B., Oesch, B. and Horst, M., "Analysis of the risk of transmitting bovine spongiform encephalopathy through bone grafts derived from bovine bone", Biomaterials,  Vol. 22, No. 12, (2001), 1599-1606.

15.   Murugan, R., Ramakrishna, S. and Panduranga Rao, K., "Nanoporous hydroxy-carbonate apatite scaffold made of natural bone", Materials Letters,  Vol. 60, No. 23, (2006), 2844-2847.

16.   Xiaoying, L., Yongbin, F., Duchun, G. and Wei, C., "Preparation and characterization of natural hydroxyapatite from animal hard tissue", Key Eng. Mater, (2007), 342-343.

17.   Ruksudjarit, A., Pengpat, K., Rujijanagul, G. and Tunkasiri, T., "Synthesis and characterization of nanocrystalline hydroxyapatite from natural bovine bone", Current Applied Physics,  Vol. 8, No. 3, (2008), 270-272.

18.   Sivakumar, M., Kumar, T., Shantha, K. and Rao, K.P., "Development of hydroxyapatite derived from indian coral", Biomaterials,  Vol. 17, No. 17, (1996), 1709-1714.

19.   Ben-Nissan, B., "Natural bioceramics: From coral to bone and beyond", Current Opinion in Solid State and Materials Science,  Vol. 7, No. 4, (2003), 283-288.

20.   Joschek, S., Nies, B., Krotz, R. and Göpferich, A., "Chemical and physicochemical characterization of porous hydroxyapatite ceramics made of natural bone", Biomaterials,  Vol. 21, No. 16, (2000), 1645-1658.

21.   Figueiredo, M., Fernando, A., Martins, G., Freitas, J., Judas, F. and Figueiredo, H., "Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone", Ceramics International,  Vol. 36, No. 8, (2010), 2383-2393.

22.   Ooi, C., Hamdi, M. and Ramesh, S., "Properties of hydroxyapatite produced by annealing of bovine bone", Ceramics International,  Vol. 33, No. 7, (2007), 1171-1177.

23.   Etok, S.E., Valsami-Jones, E., Wess, T.J., Hiller, J.C., Maxwell, C.A., Rogers, K.D., Manning, D.A., White, M.L., Lopez-Capel, E. and Collins, M.J., "Structural and chemical changes of thermally treated bone apatite", Journal of Materials Science,  Vol. 42, No. 23, (2007), 9807-9816.

24.   Hiller, J., Thompson, T., Evison, M., Chamberlain, A. and Wess, T., "Bone mineral change during experimental heating: An x-ray scattering investigation", Biomaterials,  Vol. 24, No. 28, (2003), 5091-5097.

25.   Ozawa, M. and Suzuki, S., "Microstructural development of natural hydroxyapatite originated from fishbone waste through heat treatment", Journal of the American Ceramic Society,  Vol. 85, No. 5, (2002), 1315-1317.

26.   Pang, Y. and Bao, X., "Influence of temperature, ripening time and calcination on the morphology and crystallinity of hydroxyapatite nanoparticles", Journal of the European Ceramic Society,  Vol. 23, No. 10, (2003), 1697-1704.

27.   Catanese, J., Featherstone, J. and Keaveny, T.M., "Characterization of the mechanical and ultrastructural properties of heattreated cortical bone for use as a bone substitute", Journal of Biomedical Materials Research,  Vol. 45, No. 4, (1999), 327-336.

28.   Haberko, K., Bućko, M.M., Brzezińska-Miecznik, J., Haberko, M., Mozgawa, W., Panz, T., Pyda, A. and Zarębski, J., "Natural hydroxyapatite—its behaviour during heat treatment", Journal of the European Ceramic Society,  Vol. 26, No. 4, (2006), 537-542.

29.   Thamaraiselvi, T., Prabakaran, K. and Rajeswari, S., "Synthesis of hydroxyapatite that mimic bone minerology", Trends Biomater Artif Organs,  Vol. 19, No. 2, (2006), 81-83.

30.   Koumoulidis, G.C., Katsoulidis, A.P., Ladavos, A.K., Pomonis, P.J., Trapalis, C.C., Sdoukos, A.T. and Vaimakis, T.C., "Preparation of hydroxyapatite via microemulsion route", Journal of Colloid and Interface Science,  Vol. 259, No. 2, (2003), 254-260.

31.   Gelinsky, M., Welzel, P., Simon, P., Bernhardt, A. and König, U., "Porous three-dimensional scaffolds made of mineralised collagen: Preparation and properties of a biomimetic nanocomposite material for tissue engineering of bone", Chemical Engineering Journal,  Vol. 137, No. 1, (2008), 84-96.

32.   Manafi, S., Rahimipour, M., Yazdani, B., Sadrnezhaad, S. and Amin, M., "Hydrothermal synthesis of aligned hydroxyapatite nanorods with ultra-high crystallinity", International Journal of Engineering Transactions B: Applications,  Vol. 21, No. 2, (2008), 109-116.

33.   Frondel P., JCPDS 4-697, Private Communication, 57, (1947), 949.  





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir