Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 27, No. 3 (March 2014) 359-366   

downloaded Downloaded: 376   viewed Viewed: 2690

  REDUCTION OF ODOMETRY ERROR IN A TWO WHEELED DIFFERENTIAL DRIVE ROBOT (TECHNICAL NOTE)
 
T.Mathavaraj Ravikumar and R. Saravanan
 
( Received: April 09, 2013 – Accepted: August 22, 2013 )
 
 

Abstract    Pose estimation is one of the vital issues in mobile robot navigation. Odometry data can be fused with absolute position measurements to provide better and more reliable pose estimation. This paper deals with the determination of better relative localization of a two wheeled differential drive robot by means of odometry by considering the influence of parameters namely weight, velocity, wheel perimeter and tyre width. Experiments have been conducted based on central composite rotatable design matrix. A mathematical model has been developed for the robot using Response Surface Methodology (RSM) with the help of MINITAB software. An optimum condition for minimum odometry error was obtained by using Excel (XL) Solver.

 

Keywords    Mobile Robot, Odometry, Relative Localization, Response Surface Methodology, Excel Solver.

 

چکیده    تخمین وضعیت یکی از موضوعات مهم در ناوبری روبات تلفن همراه است. داده های اودومتری را می‌توان با اندازه گیری موقعیت مطلق تلفیق کرده و برآورد بهتر و قابل اعتمادتر را وضعیت را به دست آورد. این مقاله به تعیین محل نسبی بهتر از یک روبات دو دیفرانسیل چرخ‌دار با استفاده از اودومتری با در نظر گرفتن تاثیر پارامترهای وزن، سرعت، محیط چرخ و عرض تایر می‌پردازد. آزمایش بر اساس ماتریس طراحی چرخان مرکب مرکزی انجام شده است. مدل ریاضی برای روبات با کمک نرم افزارMINITAB انجام شده است. محدوده و شرایط برای حداقل خطا در سنجش اودومتری بهینه به ترتیب با استفاده از روش سطح پاسخ (RSM) و اکسل (XL) حل کننده به دست آمد.

References   

 

1.     Lategahn, J., Kuenemund, F. and Roehrig, C., "Mobile robot localization using wlan, odometry and gyroscope data", International Journal of Computing, Vol. 9, No. 1, (2010), 22-30

2.     Byrne, R., Klarer, P. and Pletta, J., "Techniques for autonomous navigation", (1992).

3.     Hoseinnezhad, R., Moshiri, B. and Asharif, M., "A new approach to self-localization for mobile robots using sensor data fusion", International Journal of Engineering,  Vol.15, No. 2, (2002) 145-156

4.     Hollingum, J., "Caterpillar make the earth move: Automatically: The first company to achieve success in marketing free-ranging guided vehicles", Industrial Robot: An International Journal,  Vol. 18, No. 2, (1991), 15-18.

5.     Chenavier, F. and Crowley, J. L., "Position estimation for a mobile robot using vision and odometry", in Robotics and Automation, IEEE International Conference on, IEEE, (1992), 2588-2593.

6.     Evans, J. M., "Helpmate: An autonomous mobile robot courier for hospitals", in Intelligent Robots and Systems' 94.'Advanced Robotic Systems and the Real World', IROS'94. Proceedings of the IEEE/RSJ/GI International Conference on, IEEE. Vol. 3, (1994), 1695-1700.

7.     Borenstein, J., "Experimental results from internal odometry error correction with the omnimate mobile robot", Robotics and Automation, IEEE Transactions on,  Vol. 14, No. 6, (1998), 963-969.

8.     Borenstein, J. and Feng, L., "Measurement and correction of systematic odometry errors in mobile robots", Robotics and Automation, IEEE Transactions on,  Vol. 12, No. 6, (1996), 869-880.

9.     Barshan, B. and Durrant-Whyte, H. F., "Orientation estimate for mobile robots using gyroscopic information", in Intelligent Robots and Systems' 94.'Advanced Robotic Systems and the Real World', IROS'94. Proceedings of the IEEE/RSJ/GI International Conference on, IEEE. Vol. 3, (1994), 1867-1874.

10.   Komoriya, K. and Oyama, E., "Position estimation of a mobile robot using optical fiber gyroscope (ofg)", in Intelligent Robots and Systems' 94.'Advanced Robotic Systems and the Real World', IROS'94. Proceedings of the IEEE/RSJ/GI International Conference on, IEEE. Vol. 1, (1994), 143-149.

11.   Krantz, D. and Gini, M., "Non-uniform dead-reckoning position estimate updates", in Robotics and Automation, IEEE International Conference on, IEEE. Vol. 3, (1996), 2061-2066.

12.   Lee, K., Jung, C. and Chung, W., "Accurate calibration of kinematic parameters for two wheel differential mobile robots", Journal of Mechanical Science and Technology,  Vol. 25, No. 6, (2011), 1603-1611.

13.   Kleeman, L., "Odometry error covariance estimation for two wheel robot vehicles", Intelligent Robotics Research Centre, Department of Electrical and Computer Systems Engineering, Monash University, Tech. Rep. MECSE-95-1, (1995).

14.   Borenstein, J. F., L., "Umb mark - a method for measuring, comparing and correcting dead-reckoning errors in mobile robots", Technical Report UM-MEAM-94-22 University of Michigan,  (1995).

15.   Ojeda, L. and Borenstein, J., "Methods for the reduction of odometry errors in over-constrained mobile robots", Autonomous Robots,  Vol. 16, No. 3, (2004), 273-286.

16.   Korayem, M., Nakhai, A. and Rostam, T. B., "Design, modelling and errors measurement of wheeled mobile robots", The International Journal of Advanced Manufacturing Technology,  Vol. 28, No. 3-4, (2006), 403-416.

17.   Shen, Z.-h., Zhao, Y.-k. and Wu, W.-w., "Niche pseudo-parallel genetic algorithms for path optimization of autonomous mobile robot", Journal of Shanghai University (English Edition),  Vol. 10, No. 5, (2006), 449-453.

18.   Gonzalez-Gomez, J., Victores, J., Valero-Gomez, A. and Abderrahim, M., "Motion control of differential wheeled robots with joint limit constraints", in Robotics and Biomimetics (ROBIO), International Conference on, IEEE. (2011), 596-601.

19.   Eghtesad, M. and Necsulescu, D. S., "Study of the internal dynamics of an autonomous mobile robot", Robotics and Autonomous Systems,  Vol. 54, No. 4, (2006), 342-349.

20.   Wang, C., Liang, Z. and Jia, Q., "Dynamic feedback robust stabilization of nonholonomic mobile robots based on visual servoing", Journal of Control Theory and Applications,  Vol. 8, No. 2, (2010), 139-144.

21.   Cai, J. and Ruan, X., "Bionic autonomous learning control of a two-wheeled self-balancing flexible robot", Journal of Control Theory and Applications,  Vol. 9, No. 4, (2011), 521-528.

22.   Cai, Y., Zhan, Q. and Xi, X., "Path tracking control of a spherical mobile robot", Mechanism and Machine Theory,  Vol. 51, (2012), 58-73.

23.   Trojnacki, M., "Analysis of influence of drive system configurations of a four wheeled robot on its mobility", Journal of Automation, Mobile Robotics & Intelligent Systems,  Vol. 6, No. 4, (2012), 65-70.

24.   Korayem, M., Peydaie, P. and Azimirad, V., "Investigation on the effect of different parameters in wheeled mobile robot error", International Journal of Engineering,  Vol.20, No.2, (2007) 195-210.

25.   Montgomery, D. C., "Design and analysis of experiments", Wiley New York,  Vol. 7,  (1984).

26.   Senthil, P. and Amirthagadeswaran, K., "Enhancing wear resistance of squeeze cast ac2a aluminum alloy", International Journal of Engineering-Transactions A: Basics,  Vol. 26, No. 4, (2012), 365.

27.           Box, G. E., Hunter, W. G. and Hunter, J. S., "Statistics for experimenters: An introduction to design, data analysis, and model building", (1978).  





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir