|

|
IJE TRANSACTIONS C: Aspects Vol. 27, No. 3 (March 2014) 375-384
|
Downloaded:
412 |
|
Viewed:
2293 |
|
|
EFFECT OF LENGTH-SCALE PARAMETER ON PULL-IN VOLTAGE AND NATURAL FREQUENCY OF A MICRO-PLATE
|
|
|
G. Rezazadeh, K. Rashvand and H. Madinei
|
|
|
( Received:
July 27, 2013
– Accepted: September 14, 2013 )
|
|
|
Abstract
This paper deals with the effect of the intrinsic material length-scale parameter on the stability
and natural frequency
of a rectangular micro-plate for two different cases; fully clamped and fully
simply supported. A variational
formulation based on Hamilton’s principle and the modified
couple stress theory is used to obtain the nonlinear
governing equation of a micro-plate
incorporating the stretching effect. In the static case, the nonlinear governing
equation is solved
using the step-by-step linearization method (SSLM) and in the dynamic case, is integrated
using
fourth-ordered Runge-Kutta method. The static and dynamic pull-in parameters, limiting the stability
regions of
capacitive MEMS devices, are calculated and compared to those obtained by the classical
theory. The numerical results
reveal that the intrinsic size dependence of materials is more
significant for smaller thicknesses and in this case, the
stretching effect can be neglected.
|
|
|
Keywords
Material length-scale parameter, Modified couple stress theory, Rectangular micro-plate, Stability
|
|
|
چکیده
این مقاله به بررسی اثرات پارامتر مقیاس طول ماده روی پایداری و فرکانس طبیعی میکروصفحهی مستطیلی در دو حالت کاملا گیردار و کاملا با تکیهگاه ساده میپردازد. برای بهدست آوردن معادلهی غیرخطی حاکم بر میکروصفحه با در نظرگیری اثرات کشیدگی بر پایهی تئوری تنش کوپل پیراسته از اصل همیلتون استفاده میشود. معادلهی غیرخطی حاکم، در حالت استاتیکی با استفاده از روش خطیسازی گام به گام و در حالت دینامیکی با انتگرالگیری از روش رانگ-کوتای مرتبهی چهار حل میگردد. پارامترهای pull-in استاتیکی و دینامیکی که محدودکنندهی حوزههای پایداری دستگاههای MEMS خازنی است محاسبه شده و با مقادیر بهدست آمده از تئوری کلاسیک مقایسه میگردد. نتایج عددی نشان میدهد که وابستگی مواد به اندازهی ذاتی در ضخامتهای کمتر چشمگیرتر بوده و در این حالت اثرات کشیدگی قابل چشمپوشی است.
|
|
References
1. Rezazadeh,
G. and Moradi-Tahmasebi, A., "Electromechanical behavior of microbeams
with piezoelectric and electrostatic actuation", Sensing and Imaging: An
International Journal, Vol. 10,
No. 1-2, (2009), 15-30.
2. Rezazadeh,
G., Fathalilou, M., Shabani, R., Tarverdilou, S. and Talebian, S.,
"Dynamic characteristics and forced response of an
electrostatically-actuated microbeam subjected to fluid loading", Microsystem
Technologies, Vol. 15, No. 9,
(2009), 1355-1363.
3. Vahdat,
A. S. and Rezazadeh, G., "Effects of axial and residual stresses on
thermoelastic damping in capacitive micro-beam resonators", Journal
of the Franklin Institute, Vol.
348, No. 4, (2011), 622-639.
4. Rezazadeh,
G., Tahmasebi, A. and Ziaei-rad, S., "Nonlinear electrostatic behavior for
two elastic parallel fixed–fixed and cantilever microbeams", Mechatronics, Vol. 19, No. 6, (2009), 840-846.
5. Rezazadeh,
G., Madinei, H. and Shabani, R., "Study of parametric oscillation of an
electrostatically actuated microbeam using variational iteration method", Applied
Mathematical Modelling, Vol. 36,
No. 1, (2012), 430-443.
6. Ahangar,
S., Rezazadeh, G., Shabani, R., Ahmadi, G. and Toloei, A., "On the
stability of a microbeam conveying fluid considering modified couple stress
theory", International Journal of Mechanics and Materials in Design, Vol. 7, No. 4, (2011), 327-342.
7. Rezazadeh,
G., Vahdat, A. S., Tayefeh-rezaei, S. and Cetinkaya, C., "Thermoelastic
damping in a micro-beam resonator using modified couple stress theory", Acta
Mechanica, Vol. 223, No. 6,
(2012), 1137-1152.
8. Khanchehgardan,
A., Shah-Mohammadi-Azar, A., Rezazadeh, G. and Shabani, R.,
"Thermo-elastic damping in nano-beam resonators based on nonlocal
theory", International Journal of Engineering-Transactions C: Aspects, Vol. 26, No. 12, (2013), 1505.
9. Tsiatas,
G. C., "A new kirchhoff plate model based on a modified couple stress
theory", International Journal of Solids and Structures, Vol. 46, No. 13, (2009), 2757-2764.
10. Yang, F., Chong, A., Lam, D. and Tong, P.,
"Couple stress based strain gradient theory for elasticity", International
Journal of Solids and Structures,
Vol. 39, No. 10, (2002), 2731-2743.
11. Mindlin, R., "Influence of
couple-stresses on stress concentrations", Experimental Mechanics, Vol. 3, No. 1, (1963), 1-7.
12. Cosserat, E., Cosserat, F., Brocato, M. and
Chatzis, K., "Théorie des corps déformables", A. Hermann Paris, (1909).
13. Talebian, S., Rezazadeh, G., Fathalilou, M.
and Toosi, B., "Effect of temperature on pull-in voltage and natural
frequency of an electrostatically actuated microplate", Mechatronics, Vol. 20, No. 6, (2010), 666-673.
14. Ma, H., Gao, X.-L. and Reddy, J., "A
microstructure-dependent timoshenko beam model based on a modified couple
stress theory", Journal of the Mechanics and Physics of
Solids, Vol. 56, No. 12, (2008),
3379-3391.
15. Park, S. and Gao, X., "Bernoulli–euler
beam model based on a modified couple stress theory", Journal of Micromechanics and
Microengineering, Vol. 16, No.
11, (2006), 2355.
16. Kong, S., Zhou, S., Nie, Z. and Wang, K.,
"The size-dependent natural frequency of bernoulli–euler
micro-beams", International Journal of Engineering Science, Vol. 46, No. 5, (2008), 427-437.
17. Rashvand, K., Rezazadeh, G., Shabani, R. and
Sheikhlou, M., "On the size-dependent nonlinear behavior of a capacitive
rectangular micro-plate considering modified couple stress theory", in
Proceedings of the 1st International Conference of Mechanical Engineering and
Advanced Technology. ICMEAT Isfahan,
Iran, (2012)10-12.
18. Nabian, A., Rezazadeh, G., Almassi, M. and
Borgheei, A.-M., "On the stability of a functionally graded rectangular
micro-plate subjected to hydrostatic and nonlinear electrostatic
pressures", Acta Mechanica Solida Sinica,
Vol. 26, No. 2, (2013), 205-220.
19. Saeedivahdat, A., Abdolkarimzadeh, F., Feyzi,
A., Rezazadeh, G. and Tarverdilo, S., "Effect of thermal stresses on
stability and frequency response of a capacitive microphone", Microelectronics
Journal, Vol. 41, No. 12,
(2010), 865-873.
20. Younis, M. I., Modeling and simulation of microelectromechanical systems in
multi-physics fields Citeseer,
(2004),
21. Timoshenko, S., Woinowsky-Krieger, S. and
Woinowsky, S., "Theory of plates and shells", McGraw-hill New
York, Vol. 2, (1959).
22. Mansfield, E. H., "The bending and
stretching of plates", Cambridge University Press, (2005).
23. Reddy, J. N., "Energy principles and
variational methods in applied mechanics", Wiley New York, (2002).
24. Rezazadeh, G., Keyvani, A., Sadeghi, M. H.
and Bahrami, M., "Effects of ohmic resistance on dynamic characteristics
and impedance of micro/nano cantilever beam resonators", Sensing
and Imaging: An International Journal,
Vol. 14, No. 1-2, (2013), 1-12.
25. Francais, O. and Dufour, I., "Normalized
abacus for the global behavior of diaphragms: Pneumatic, electrostatic,
piezoelectric or electromagnetic actuation", Journal of Modeling and
Simulation of Microsystems, Vol.
2, No., (1999), 149-160.
26. Reddy, J. N., "Theory and analysis of
elastic plates and shells", CRC press,
(2007).
27. Cao, Y., Nankivil, D., Allameh, S. and
Soboyejo, W., "Mechanical properties of au films on silicon
substrates", Materials and Manufacturing Processes, Vol. 22, No. 2, (2007), 187-194.
28. Lee, S., Han, S., Hyun, S., Lee, H., Kim, J.,
and Kim, Y., "Measurement of young’s modulus and poisson’s ratio for thin
au films using a visual image tracing system", Current Applied Physics, Vol. 9, No. 1, (2009), S75-S78.
29. Ballestra, A., Brusa, E., De Pasquale, G.,
Munteanu, M. G. and Somà, A., "Fem modelling and experimental
characterization of microbeams in presence of residual stress", Analog
Integrated Circuits and Signal Processing, Vol. 63, No. 3, (2010), 477-488.
30. Jomehzadeh, E., Noori, H. and Saidi, A.,
"The size-dependent vibration analysis of micro-plates based on a modified
couple stress theory", Physica E: Low-dimensional Systems and
Nanostructures, Vol. 43, No. 4,
(2011), 877-883.
31. Nayfeh, A. H., Younis, M. I. and
Abdel-Rahman, E. M., "Dynamic pull-in phenomenon in mems resonators",
Nonlinear
Dynamics, Vol. 48, No. 1-2,
(2007), 153-163.
32. Zong, Z. and Soboyejo, W., "Indentation size effects
in face centered cubic single crystal thin films", Materials Science and
Engineering: A, Vol. 404, No. 1,
(2005), 281-290.
|
|
|
|
|