Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 27, No. 3 (March 2014) 395-402   

downloaded Downloaded: 364   viewed Viewed: 2312

  OPTIMAL DESIGN OF SANDWICH PANELS USING MULTI-OBJECTIVE GENETIC ALGORITHM AND FINITE ELEMENT METHOD
 
A. Khalkhali, N. Narimanzadeh, S. Khakshournia and S. Amiri
 
( Received: May 20, 2013 – Accepted: August 22, 2013 )
 
 

Abstract    Low weight and high load capacity are remarkable advantages of sandwich panels with corrugated core, which make them more considerable by engineering structure designers. It’s important to consider the limitations such as yielding and buckling as design constraints for optimal design of these panels. In this paper, multi-objective optimization of sandwich panels with corrugated core is carried out by minimizing two supposed objective functions, the structure’s weight and deflection. The finite element model of structure is created using the commercial software ANSYS, which is employed to calculate the deflection of panel in different problem conditions. A NSGA-II code prepared in MATLAB, is used to perform the optimization process in a gradual evolution trend, which leads to obtain the Pareto front consisting a set of design vectors and optimal objective function vectors. Two conventional methods are then used to select the trade-off optimal point among the Pareto non-dominant optimal set.

 

Keywords    Sandwich panels, Multi-objective optimization, Finite elements method

 

چکیده    وزن کم و ظرفیت بار بالا از مزیت های قابل توجه پانل های ساندویچی با هسته موج دار هستند که موجب توجه مهندسین طراحان سازه می شوند. در نظر گرفتن محدودیت هایی مانند بازده و کمانش به عنوان قید های طراحی برای طراحی بهینه این پانل ها دارای اهمیت است. در این مقاله، بهینه سازی پانل های ساندویچی با هسته موج دار با به حداقل رساندن دو تابع، هدف شامل وزن و انحراف ساختار است انجام شده است. مدل المان محدود سازه با استفاده از نرم افزار تجاری ANSYS ایجاد شده که برای محاسبه انحراف پانل در شرایط مختلف به کار می رود. از کد NSGA-II که در MATLAB تهیه شده برای انجام فرایند بهینه سازی در روند تکامل تدریجی، که منجر به به دست آوردن جبهه پارتو شامل مجموعه ای از بردارهای طراحی و بهینه تابع هدف است، استفاده شده است. سپس در میان مجموعه بهینه غیر غالب پارتو، دو روش متداول برای انتخاب نقطه بهینه مورد استفاده قرار گرفت.

References   

 

1.     Wadley, H. N., Fleck, N. A. and Evans, A. G., "Fabrication and structural performance of periodic cellular metal sandwich structures", Composites Science and Technology,  Vol. 63, No. 16, (2003), 2331-2343.

2.     He, L., Cheng, Y.-S. and Liu, J., "Precise bending stress analysis of corrugated-core, honeycomb-core and x-core sandwich panels", Composite Structures,  Vol. 94, No. 5, (2012), 1656-1668.

3.     Wadley, H. N., BÝrvik, T., Olovsson, L., Wetzel, J. J., Dharmasena, K. P., Hopperstad, O. S., Deshpande, V., and Hutchinson, J. W., "Deformation and fracture of impulsively loaded sandwich panels", Journal of the Mechanics and Physics of Solids,  Vol. 61, No. 2, (2012) 674-699.

4.     Valdevit, L., Hutchinson, J. and Evans, A., "Structurally optimized sandwich panels with prismatic cores", International Journal of Solids and Structures,  Vol. 41, No. 18, (2004), 5105-5124.

5.     Zok, F., Waltner, S., Wei, Z., Rathbun, H., McMeeking, R., and Evans, A., "A protocol for characterizing the structural performance of metallic sandwich panels: Application to pyramidal truss cores", International Journal of Solids and Structures,  Vol. 41, No. 22, (2004), 6249-6271.

6.     Deb, K., Pratap, A., Agarwal, S. and Meyarivan, T., "A fast and elitist multiobjective genetic algorithm: Nsga-ii", Evolutionary Computation, IEEE Transactions on,  Vol. 6, No. 2, (2002), 182-197.

7.     Coello, C. A. C., "A comprehensive survey of evolutionary-based multiobjective optimization techniques", Knowledge and Information Systems,  Vol. 1, No. 3, (1999), 129-156.

8.     Nariman-Zadeh, N., Darvizeh, A. and Ahmad-Zadeh, G., "Hybrid genetic design of gmdh-type neural networks using singular value decomposition for modelling and prediction of the explosive cutting process", Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture,  Vol. 217, No. 6, (2003), 779-790.

9.     Alitavoli, M., Nariman-zadeh, Khalkhali, A. and Mehran, M., "Modeling of abrasive fluid micro machining parameters by polynomial neural networks and genetic algorithms", in MESM Porto, Portugal. (2005).

10.   Goldberg, D., "Genetic algorithms in optimization, search and machine learning", Addison Wesley, New York. Eiben AE, Smith, Vol. 905, (1989), 205-211.

11.   Wang, T., Li, S. and Nutt, S. R., "Optimal design of acoustical sandwich panels with a genetic algorithm", Applied Acoustics,  Vol. 70, No. 3, (2009), 416-425.

12.   Hou, S., Zhao, S., Ren, L., Han, X. and Li, Q., "Crashworthiness optimization of corrugated sandwich panels", Materials & Design,  Vol. 51, (2013) 1071-1084.

13.   Bazant, L. and Z.P.Cedolin, "Stability of structure", Oxford University Press,  (1991).

14.   Liu, T., Deng, Z. and Lu, T., "Design optimization of truss-cored sandwiches with homogenization", International Journal of Solids and Structures,  Vol. 43, No. 25, (2006), 7891-7918.

15.   Nariman-Zadeh, N., Atashkari, K., Jamali, A., Pilechi, A. and Yao, X., "Inverse modelling of multi-objective thermodynamically optimized turbojet engines using gmdh-type neural networks and evolutionary algorithms", Engineering Optimization,  Vol. 37, No. 5, (2005), 437-462.

16.   Atashkari, K., Nariman-Zadeh, N., Pilechi, A., Jamali, A. and Yao, X., "Thermodynamic pareto optimization of turbojet engines using multi-objective genetic algorithms", International Journal of Thermal Sciences,  Vol. 44, No. 11, (2005), 1061-1071.

17.   Lu, T., Hutchinson, J. and Evans, A., "Optimal design of a flexural actuator", Journal of the Mechanics and Physics of Solids,  Vol. 49, No. 9, (2001), 2071-2093. 





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir