|

|
IJE TRANSACTIONS C: Aspects Vol. 27, No. 3 (March 2014) 441-448
|
Downloaded:
174 |
|
Viewed:
2319 |
|
|
A STUDY ON COMBINATION OF VON MISES AND TRESCA YIELD LOCI IN NON-ASSOCIATED VISCOPLASTICITY
|
|
|
M. Kadkhodayan and F. Moayyedian
|
|
|
( Received:
April 08, 2013
– Accepted: August 22, 2013 )
|
|
|
Abstract
In this study a non-associated viscoplastic flow rule (NAVFR) with combining von Mises and Tresca loci in place of yield
and plastic potential functions and vice verse is presented. With the aid of fully implicit time stepping scheme and
discussing the other studies on plastic potential flow rules and also experimental results it is shown that the proposed
NAVFR can be adopted to forecast the experimental events more accurate than the conventional associated viscoplastic
flow rules (AVFR).
|
|
|
Keywords
Rate-Dependant Non-associated Viscoplastic Flow Rule, Fully Implicit Time Stepping Scheme, Internally Pressurized Thick
Walled Cylinder.
|
|
|
چکیده
در این پژوهش قانون جریان ویسکوپلاستیسیته ناوابسته با ترکیب سطوح تسلیم ون مایزز و ترسکا به جای توابع تسلیم و پتانسیل پلاستیک و برعکس ارائه شده است. به کمک روش مرحله ای زمانی کاملا غیرصریح و همچنین بحث در مورد مطالعات انجام شده روی توابع پتانسیل پلاستیک ارائه شده توسط سایر مولفین و همچنین نتایج آزمایشگاهی نشان داده خواهد شد که قانون جریان ویسکوپلاستیسیته ناوابسته ارائه شده از قانون جریان وابسته مرسوم نظیر خود نتایج آزمایشگاهی را دقیق تر پیش بینی می نماید.
|
|
References
1. Stoughton,
T. B. and Yoon, J.-W., "A pressure-sensitive yield criterion under a
non-associated flow rule for sheet metal forming", International Journal of
Plasticity, Vol. 20, No. 4,
(2004), 705-731.
2. Nukala,
P. K. V., "A return mapping algorithm for cyclic viscoplastic constitutive
models", Computer Methods in Applied Mechanics and Engineering, Vol. 195, No. 1, (2006), 148-178.
3. Ohno,
N. and Wang, J., "Kinematic hardening rules for", European
Journal of Mechanics, A/Solids,
Vol. 13, No. 4, (1994), 519-531.
4. Liang,
L., Liu, Y. and Xu, B., "Design sensitivity analysis for parameters
affecting geometry, elastic–viscoplastic material constant and boundary
condition by consistent tangent operator-based boundary element method", International
Journal of Solids and Structures,
Vol. 44, No. 7, (2007), 2571-2592.
5. Cvitanić,
V., Vlak, F. and Lozina, ˇ., "A finite element formulation based on
non-associated plasticity for sheet metal forming", International Journal of
Plasticity, Vol. 24, No. 4,
(2008), 646-687.
6. Stoughton,
T. B. and Yoon, J. W., "Anisotropic hardening and non-associated flow in
proportional loading of sheet metals", International Journal of
Plasticity, Vol. 25, No. 9,
(2009), 1777-1817.
7. Gao,
X., Zhang, T., Hayden, M. and Roe, C., "Effects of the stress state on
plasticity and ductile failure of an aluminum 5083 alloy", International
Journal of Plasticity, Vol. 25,
No. 12, (2009), 2366-2382.
8. Mohr,
D., Dunand, M. and Kim, K.-H., "Evaluation of associated and
non-associated quadratic plasticity models for advanced high strength steel
sheets under multi-axial loading", International Journal of Plasticity, Vol. 26, No. 7, (2010), 939-956.
9. Romano,
G., Barretta, R. and Diaco, M., "Algorithmic tangent stiffness in
elastoplasticity and elastoviscoplasticity: A geometric insight", Mechanics
Research Communications, Vol.
37, No. 3, (2010), 289-292.
10. Taherizadeh, A., Green, D. E. and Yoon, J.
W., "Evaluation of advanced anisotropic models with mixed hardening for
general associated and non-associated flow metal plasticity", International
Journal of Plasticity, Vol. 27,
No. 11, (2011), 1781-1802.
11. Gao, X., Zhang, T., Zhou, J., Graham, S. M.,
Hayden, M., and Roe, C., "On stress-state dependent plasticity modeling:
Significance of the hydrostatic stress, the third invariant of stress deviator
and the non-associated flow rule", International Journal of Plasticity, Vol. 27, No. 2, (2011), 217-231.
12. Voyiadjis, G. Z., Shojaei, A. and Li, G.,
"A generalized coupled viscoplastic–viscodamage–viscohealing theory for
glassy polymers", International Journal of Plasticity, Vol. 28, No. 1, (2012), 21-45.
13. Voyiadjis, G. Z. and Abu Al-Rub, R. K.,
"Thermodynamic based model for the evolution equation of the backstress in
cyclic plasticity", International Journal of Plasticity, Vol. 19, No. 12, (2003), 2121-2147.
14. Berga, A., "Mathematical and numerical
modeling of the non-associated plasticity of soils—part 1: The boundary value
problem", International Journal of Non-Linear Mechanics, Vol. 47, No. 1, (2012), 26-35.
15. Moayyedian, F. and Kadkhodayan, M., "A
general solution in rate-dependant plasticity", International Journal of
Engineering, Vol. 26, No.,
(2013), 391-400.
16. Hinton, E. and Owen, D., "Finite
elements in plasticity: Theory and practice", Pineridge, Swansea, Wales, Vol., No., (1980).
17. de Souza Neto, E. A., Peric, D. and Owen, D.
R. J., "Computational methods for plasticity: Theory and
applications", John Wiley & Sons,
(2011).
18. Simof, J. and Hughes, T., "Computational
inelasticity", (2008).
19. Zienkiewicz, O. C. and Taylor, R. L.,
"The finite element method for solid and structural mechanics",
Butterworth-Heinemann, (2005).
20. Crisfield, M., Remmers, J. and Verhoosel, C.,
"Nonlinear finite element analysis of solids and structures", John
Wiley & Sons, (2012).
21. Hill, R., "The mathematical theory of
plasticity", Oxford university press,
Vol. 11, (1998).
22. Chakrabarty, J., "Theory of
plasticity", Butterworth-Heinemann,
(2006).
23. Chen, W.-F. and Zhang, H., "Structural
plasticity: Theory, problems and cae software", Springer-Verlag New York,
Inc., (1990).
24. Huang, S., "Continuum theory of
plasticity", Wiley. com, (1995).
25. Marcal, P., "A note on the elastic-plastic thick
cylinder with internal pressure in the open and closed-end condition", International
Journal of Mechanical Sciences,
Vol. 7, No. 12, (1965), 841-845.
|
|
|
|
|