|

|
IJE TRANSACTIONS C: Aspects Vol. 27, No. 3 (March 2014) 499-508
|
Downloaded:
275 |
|
Viewed:
2208 |
|
|
VIBRATION ANALYSIS OF A NONLINEAR SYSTEM WITH A NONLINEAR ABSORBER UNDER THE PRIMARY AND SUPER-HARMONIC RESONANCES (TECHNICAL NOTE)
|
|
|
L. Saberi and H. Nahvi
|
|
|
( Received:
June 06, 2013
– Accepted: August 22, 2013 )
|
|
|
Abstract
Abstract In vibratory systems, linear and nonlinear vibration absorbers can be used to suppress the
primary and super-harmonic resonance responses. In this paper, the behavior of a nonlinear system with a nonlinear
absorber, under the primary and super-harmonic resonances is investigated. The stiffnesses of the main system and the
absorber are cubically nonlinear and the dampers are linear. Multiple time scales method is used to obtain approximate
solution of the nonlinear equations of motion. Results show that at primary resonance, a linear absorber can suppress
the peak amplitude of the system better than a non-linear one. But under super-harmonic resonance, the vibration
amplitude can be more effectively reduced by adding a nonlinear absorber to the vibrating system.
|
|
|
Keywords
Nonlinear vibrations, Primary resonance, Super-harmonic resonance, Non-linear absorber, Multiple time scales.
|
|
|
چکیده
چکیده در سیستمهای ارتعاشی، به منظور جلوگیری از تشدیدهای اولیه و سوپرهارمونیک، میتوان ازجاذبهای دینامیکی خطی یا غیرخطی استفاده کرد. در این مقاله، رفتار یک سیستم غیرخطی به همراه یک جاذب غیرخطی، تحت تشدیدهای اولیه و سوپرهارمونیک، مورد بررسی قرار میگیرد. سختی سیستم اصلی و جاذب غیرخطی از نوع درجهی سه میباشد و میراکنندهها خطی هستند. برای به دست آوردن حل تقریبی معالات غیرخطی حرکت، از روش مقیاس زمانی متعدداستفاده شده است. نتایج نشان میدهند که در تشدید اولیه در جلوگیری از ماکزیمم دامنهی سیستم، یک جاذب خطی عملکرد بهتری نسبت به جاذب غیرخطی دارد. اما تحت تشدید سوپرهارمونیک، با اضافه کردن یک جاذب غیرخطی به سیستم ارتعاشی ، دامنهی ارتعاش بیشتر از وقتی جاذب خطی است، کاهش مییابد.
|
|
References
1. El-Bassiouny,
A. and Eissa, M., "Dynamics of a single-degree-of-freedom structure with
quadratic, cubic and quartic non-linearities to a harmonic resonance", Applied
Mathematics and Computation,
Vol. 139, No. 1, (2003), 1-21.
2. Pai,
P., Rommel, B. and Schulz, M. J., "Non-linear vibration absorbers using
higher order internal resonances", Journal of Sound and Vibration, Vol. 234, No. 5, (2000), 799-817.
3. Leung,
A. Y., Ji, J. C. and Chen, G., "Resonance control for a forced
single-degree-of-freedom nonlinear system", International Journal of
Bifurcation and Chaos, Vol. 14,
No. 04, (2004), 1423-1429.
4. Chatterjee,
S., "Vibration control by recursive time-delayed acceleration
feedback", Journal of Sound and Vibration,
Vol. 317, No. 1, (2008), 67-90.
5. Nahvi,
H., "The response of two-degree-of-freedom self-sustained systems with
quadratic nonlinearities to a parametric excitation", International Journal of
Engineering, Vol. 14, No. 3,
(2001), 255-262.
6. Amer,
Y. and El-Sayed, A., "Vibration suppression of non-linear system via
non-linear absorber", Communications in Nonlinear Science and
Numerical Simulation, Vol. 13,
No. 9, (2008), 1948-1963.
7. Zhu,
S., Zheng, Y. and Fu, Y., "Analysis of non-linear dynamics of a
two-degree-of-freedom vibration system with non-linear damping and non-linear
spring", Journal of Sound and Vibration,
Vol. 271, No. 1, (2004), 15-24.
8. Liu,
K. and Liu, J., "The damped dynamic vibration absorbers: Revisited and new
result", Journal of Sound and Vibration,
Vol. 284, No. 3, (2005), 1181-1189.
9. Viguié,
R. and Kerschen, G., "Nonlinear vibration absorber coupled to a nonlinear
primary system: A tuning methodology", Journal of Sound and Vibration, Vol. 326, No. 3, (2009), 780-793.
10. Ji, J. and Zhang, N., "Suppression of
the primary resonance vibrations of a forced nonlinear system using a dynamic
vibration absorber", Journal of Sound and Vibration, Vol. 329, No. 11, (2010), 2044-2056.
11. Jinchen, J. and Nong, Z., "Suppression
of super-harmonic resonance response using a linear vibration
absorber", (2011).
12. Sayed, M. and Kamel, M., "1: 2 and 1: 3
internal resonance active absorber for non-linear vibrating system", Applied
Mathematical Modelling, Vol. 36,
No. 1, (2012), 310-332.
13. H.A., E.-G. and El-Ganaini, W. A. A.,
"Vibration suppression of a dynamical system to multi- parametric
excitation via time-delay absorber", Applied Mathematical Modeling, Vol. 36, (2012), 35-45.
14. Febbo, M. and Machado, S., "Nonlinear
dynamic vibration absorbers with a saturation", Journal of Sound and Vibration,
(2012).
15. Hsu, Y.-S., Ferguson, N. S. and Brennan, M.
J., The experimental performance of a
nonlinear dynamic vibration absorber, in Topics in nonlinear dynamics, Springer,
Vol. 1. (2013), 247-257.
16. Rao, S. S., "Mechanical vibration",
4th ed ed, New Jersey, Person Prentice Hall,
(2001).
17. Nayfeh, A. and Mook, D., "Nonlinear oscillations.
", John Willey and Sons, New York,
(1979).
|
|
|
|
|