Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 27, No. 3 (March 2014) 499-508   

downloaded Downloaded: 275   viewed Viewed: 2208

  VIBRATION ANALYSIS OF A NONLINEAR SYSTEM WITH A NONLINEAR ABSORBER UNDER THE PRIMARY AND SUPER-HARMONIC RESONANCES (TECHNICAL NOTE)
 
L. Saberi and H. Nahvi
 
( Received: June 06, 2013 – Accepted: August 22, 2013 )
 
 

Abstract    Abstract In vibratory systems, linear and nonlinear vibration absorbers can be used to suppress the primary and super-harmonic resonance responses. In this paper, the behavior of a nonlinear system with a nonlinear absorber, under the primary and super-harmonic resonances is investigated. The stiffnesses of the main system and the absorber are cubically nonlinear and the dampers are linear. Multiple time scales method is used to obtain approximate solution of the nonlinear equations of motion. Results show that at primary resonance, a linear absorber can suppress the peak amplitude of the system better than a non-linear one. But under super-harmonic resonance, the vibration amplitude can be more effectively reduced by adding a nonlinear absorber to the vibrating system.

 

Keywords    Nonlinear vibrations, Primary resonance, Super-harmonic resonance, Non-linear absorber, Multiple time scales.

 

چکیده    چکیده در سیستم­های ارتعاشی، به منظور جلوگیری از تشدیدهای اولیه و سوپرهارمونیک، می­توان ازجاذب­های دینامیکی خطی یا غیرخطی استفاده کرد. در این مقاله، رفتار یک سیستم غیرخطی به همراه یک جاذب غیرخطی، تحت تشدیدهای اولیه و سوپرهارمونیک، مورد بررسی قرار می­گیرد. سختی سیستم اصلی و جاذب غیرخطی از نوع درجه­ی سه می­باشد و میراکننده­ها خطی هستند. برای به دست آوردن حل تقریبی معالات غیرخطی حرکت، از روش مقیاس زمانی متعدد­استفاده شده است. نتایج نشان می­دهند که در تشدید اولیه در جلوگیری از ماکزیمم دامنه­ی سیستم، یک جاذب خطی عملکرد بهتری نسبت به جاذب غیرخطی دارد. اما تحت تشدید سوپرهارمونیک، با اضافه کردن یک جاذب غیرخطی به سیستم ارتعاشی ، دامنه­ی ارتعاش بیشتر از وقتی جاذب خطی است، کاهش می­یابد.

References   

 

1.     El-Bassiouny, A. and Eissa, M., "Dynamics of a single-degree-of-freedom structure with quadratic, cubic and quartic non-linearities to a harmonic resonance", Applied Mathematics and Computation,  Vol. 139, No. 1, (2003), 1-21.

2.     Pai, P., Rommel, B. and Schulz, M. J., "Non-linear vibration absorbers using higher order internal resonances", Journal of Sound and Vibration,  Vol. 234, No. 5, (2000), 799-817.

3.     Leung, A. Y., Ji, J. C. and Chen, G., "Resonance control for a forced single-degree-of-freedom nonlinear system", International Journal of Bifurcation and Chaos,  Vol. 14, No. 04, (2004), 1423-1429.

4.     Chatterjee, S., "Vibration control by recursive time-delayed acceleration feedback", Journal of Sound and Vibration,  Vol. 317, No. 1, (2008), 67-90.

5.     Nahvi, H., "The response of two-degree-of-freedom self-sustained systems with quadratic nonlinearities to a parametric excitation", International Journal of Engineering,  Vol. 14, No. 3, (2001), 255-262.

6.     Amer, Y. and El-Sayed, A., "Vibration suppression of non-linear system via non-linear absorber", Communications in Nonlinear Science and Numerical Simulation,  Vol. 13, No. 9, (2008), 1948-1963.

7.     Zhu, S., Zheng, Y. and Fu, Y., "Analysis of non-linear dynamics of a two-degree-of-freedom vibration system with non-linear damping and non-linear spring", Journal of Sound and Vibration,  Vol. 271, No. 1, (2004), 15-24.

8.     Liu, K. and Liu, J., "The damped dynamic vibration absorbers: Revisited and new result", Journal of Sound and Vibration,  Vol. 284, No. 3, (2005), 1181-1189.

9.     Viguié, R. and Kerschen, G., "Nonlinear vibration absorber coupled to a nonlinear primary system: A tuning methodology", Journal of Sound and Vibration,  Vol. 326, No. 3, (2009), 780-793.

10.   Ji, J. and Zhang, N., "Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber", Journal of Sound and Vibration,  Vol. 329, No. 11, (2010), 2044-2056.

11.   Jinchen, J. and Nong, Z., "Suppression of super-harmonic resonance response using a linear vibration absorber",  (2011).

12.   Sayed, M. and Kamel, M., "1: 2 and 1: 3 internal resonance active absorber for non-linear vibrating system", Applied Mathematical Modelling,  Vol. 36, No. 1, (2012), 310-332.

13.   H.A., E.-G. and El-Ganaini, W. A. A., "Vibration suppression of a dynamical system to multi- parametric excitation via time-delay absorber", Applied Mathematical Modeling,  Vol. 36, (2012), 35-45.

14.   Febbo, M. and Machado, S., "Nonlinear dynamic vibration absorbers with a saturation", Journal of Sound and Vibration, (2012).

15.   Hsu, Y.-S., Ferguson, N. S. and Brennan, M. J., The experimental performance of a nonlinear dynamic vibration absorber, in Topics in nonlinear dynamics, Springer, Vol. 1. (2013), 247-257.

16.   Rao, S. S., "Mechanical vibration", 4th ed ed, New Jersey, Person Prentice Hall,  (2001).

17.           Nayfeh, A. and Mook, D., "Nonlinear oscillations. ", John Willey and Sons, New York,  (1979).  





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir