|

|
IJE TRANSACTIONS C: Aspects Vol. 27, No. 6 (June 2014) 819-828
|
Downloaded:
355 |
|
Viewed:
2007 |
|
|
SURFACE PRESSURE CONTOUR PREDICTION USING A GRNN ALGORITHM
|
|
|
A. R. Davari, M. R. Soltani and S. Attarian
|
|
|
( Received:
September 04, 2013
– Accepted: December 12, 2013 )
|
|
|
Abstract
A new
approach based on a Generalized Regression Neural
Network (GRNN) has been proposed to predict the planform surface
pressure field
on a wing-tail combination in low subsonic flow. Extensive wind tunnel results
were used for training the
network and verification of the values predicted by
this approach. GRNN has been trained by the aforementioned
experimental data
and subsequently was used as a prediction tool to determine the surface
pressure. Most of the previous
applications of the GRNN in prediction problems
were restricted to single or limited outputs, while in the present
method the
entire planform surface pressure was predicted at once. This highly decreases
the calculation time while
preserving a remarkable degree of accuracy. The wind
tunnel results verify the accuracy of the data offered by the GRNN,
which
indicates that the present prediction and optimization tool provides sufficient
accuracy with modest amount of
experimental data.
|
|
|
Keywords
Canard, GRNN, POrediction, Flowfield
|
|
|
چکیده
در این مقاله یک روش جدید بمبنای
شبکه عصبی مصنوعی GRNN پیشنهاد گردیده که
برمبنای آن می توان توزیع فشار روی سطح یک بالک کنترلی را روی کل سطح به طور
همزمان در جریان زیرصوت پیش بینی نمود. جهت آموزش شبکه و بررسی صحت نتایج پیش بینی
شده، آزمایش های گسترده ایی در تونل باد روی یک ترکیب بدنه-بالک کنترلی انجام و یک
بانک اطلاعاتی از نتایج آن تدوین گردید. در مسائل معمول تخمین با استفاده از شبکه GRNN، معمولا یک یا چند خروجی معدود از این شبکه استخراج می
شود. یکی از نقاط قوت الگوریتم استفاده شده در این مقاله تخمین میدان جریان روی
سطح بالک به طور کامل و همزمان است که در عین برخورداری از دقت مناسب، در کوتاه
ترین زمان ممکن محاسبات مربوطه را به انجام می رساند. مقایسه نتایج تخمین GRNN و داد های تونل باد، دقت نتایج تخمین را
تایید نموده اند.
|
|
References
1.
Mori, R. and Suzuki, S., "Neural network modeling of
lateral pilot landing control", Journal of Aircraft, Vol. 46, No. 5, (2009), 1721-1726.
2.
Basu, J.K.,
Bhattacharyya, D. and Kim, T.-h., "Use of artificial neural network in
pattern recognition", International Journal of Software
Engineering & Its Applications,
Vol. 4, No. 2, (2010).
3.
Austin, N.,
Kumar, P.S. and Kanthavelkumaran, N., "Artificial neural network involved
in the action of optimum mixed refrigerant (domestic refrigerator)", International
Journal of Engineering (1025-2495),
Vol. 26, No. 10, (2013)
4.
Deswal, S. and
Pal, M., "Artificial neural network based modeling of evaporation losses
in reservoirs", Proceedings of World Academy of Science:
Engineering & Technology,
Vol. 41, (2008)
5.
WALSH, J. and
ROGERS, J., "Aerodynamic performance optimization of a rotor blade using a
neuralnetwork as the analysis", (1992).
6.
McMillen, R.L.,
Steck, J.E. and Rokhsaz, K., "Application of an artificial neural network
as a flight test data estimator", Journal of aircraft, Vol. 32, No. 5, (1995), 1088-1094.
7.
Faller, W.E. and
Schreck, S.J., "Real-time prediction of unsteady aerodynamics: Application
for aircraft control and manoeuvrability enhancement", Neural
Networks, IEEE Transactions on,
Vol. 6, No. 6, (1995), 1461-1468.
8.
Lo, C.F., Zhao,
J.L. and DeLoach, R., "Application of neural networks to wind tunnel data
response surface methods", in 21 st AIAA Aerodynamics Measurement
Technology and Ground Testing Conference, (2000), 19-22.
9.
Berdahl, C.,
"Neural network detection of shockwaves", AIAA journal, Vol. 40, No. 3, (2002), 531-536.
10.
Rae, W.H. and
Pope, A., "Low-speed wind tunnel testing, John Wiley, (1984)
11.
Beckwith, T.G.,
Marangoni, R.D. and Lienhard,
J.H., "Mechanical measurements, Pearson Prentice Hall, (2007)
12.
Davari, A.R.,
Hadi Dulabi, M., Soltani, M.R. and Askari, F., "Impact of body on the tail
surface flowfield at high incidences", Journal of Aerospace Science and
Technology; JAST, Vol. 6, No. 1,
(2009)
13.
Specht, D.F.,
"A general regression neural network", Neural Networks, IEEE
Transactions on, Vol. 2, No. 6,
(1991), 568-576.
14.
Parzen, E.,
"On estimation of a probability density function and mode", Annals
of mathematical statistics, Vol. 33, No. 3, (1962), 1065-1076.
15.
Cacoullos, T.,
"Estimation of a multivariate density", Annals of the Institute of
Statistical Mathematics, Vol.
18, No. 1, (1966), 179-189.
16. Bauer, M.M., "General regression neural network for
technical use", Master's Thesis, University of Wisconsin-Madison,
(1995).
|
|
|
|
|