Abstract




 
   

IJE TRANSACTIONS C: Aspects Vol. 27, No. 6 (June 2014) 865-880   

downloaded Downloaded: 368   viewed Viewed: 2278

  MICRO-MODELING OF MASONRY INFILLED RC MOMENT RESISTING FRAMES TO INVESTIGATE ARRANGEMENT OF COMPRESSIVE DIAGONAL STRUTS
 
M. A. Rahemi, A. A. Tasnimi and A. Sarvghad-Moghadam
 
( Received: August 19, 2013 – Accepted: December 12, 2013 )
 
 

Abstract    Accurate modeling of masonry has been a major concern of the researchers in the past decades. Besides reinforced and unreinforced masonry structures, masonry can be found in frame structures as infill panels which are used as partitions and/or external walls. These elements role as a part of structure and introduce a large degree of nonlinearity into the system. In this study, a micro-modeling procedure is introduced using finite element analysis to model masonry infilled reinforced concrete moment resisting frames (RCMRFs). After calibration using material tests and small masonry assemblage experiments, the model will be used to predict the behavioral parameters and failure mode of this type of structures. It will be shown that the proposed procedure is fairly successful in estimation of the stiffness and strength and can simulate the failure mode of the infilled RCMRFs tested under semi dynamic lateral loading. Finally, the process of formation and arrangement of compressive struts in different stages of lateral loading in the infill wall will be discussed. As a result, it will be concluded that the proposed modeling strategy can be used as a means to better recognize the behavior of such structures and to propose new or precise existing simplified models such as equivalent diagonal strut model.

 

Keywords    Masonry infill panels, Micro-modeling, Nonlinear analysis, DIANA program

 

چکیده    مدلسازي دقيق مصالح بنايي همواره يكي از دغدغه‌هاي اصلي محققين در دهه‌هاي گذشته بوده است. مصالح بنايي، علاوه بر سازه‌هاي بنايي مسلح و غير مسلح، در قاب‌هاي سازه‌اي نيز به شكل ميانقاب به منظور جداكردن فضاها و يا به عنوان ديوارهاي خارجي يافت مي‌شوند. اين عناصر به عنوان بخشي از سازه عمل كرده و رفتار سازه را به شدت غيرخطي مي‌كنند. در مطالعه حاضر، يك روش ريزمدلسازي با استفاده از تحليل عناصر محدود به منظور مدلسازي قاب‌هاي خمشي بتن مسلح ميان‌پر معرفي مي‌گردد. پس از واسنجي مدل با استفاده از آزمايشات مصالح و نمونه‌هاي كوچك بنايي، مدل ساخته شده به منظور پيش‌بيني ويژگي‌هاي رفتاري و شكل گسيختگي اين نوع از سازه‌ها مورد استفاده قرار مي‌گيرد. نشان داده مي‌شود كه روش ارائه شده، در تخمين سختي و مقاومت سازه نسبتا موفق بوده و مي‌تواند شكل گيسختگي قاب‌هاي خمشي بتن مسلح ميان‌پر را تحت بار جانبي شبه ديناميكي شبيه‌سازي كند. در پايان، روند شكل‌گيري و چيدمان دستك‌هاي فشاري در داخل ديوار پركننده در مراحل مختلف بارگذاري جانبي مورد بحث قرار مي‌گيرد و نتيجه گيري مي‌شود كه راهبرد مدلسازي پيشنهاد شده مي‌تواند به عنوان ابزاري براي فهم بهتر رفتار چنين سازه‌هايي و همچنين جهت پيشنهاد مدل‌هاي ساده جديد يا تدقيق مدل‌هاي موجود از جمله مدل قيد قطري معادل مورد استفاده قرار گيرد.

References   

 

1.     Lourenço, P., "Computational strategies for masonry structures",  (1996).

2.     Guinea, G., Hussein, G., Elices, M. and Planas, J., "Micromechanical modeling of brick-masonry fracture", Cement and Concrete Research,  Vol. 30, No. 5, (2000), 731-737.

3.     Sutcliffe, D., Yu, H. and Page, A., "Lower bound limit analysis of unreinforced masonry shear walls", Computers & Structures,  Vol. 79, No. 14, (2001), 1295-1312.

4.     Crisafulli, F.J., "Seismic behavior of reinforced concrete structures with masonry infills", University of Canterbury, Christchurch, PhD Dissertation,  (1997),

5.     Zarnic, R. and Tomazevic, M., "An experimentally obtained method for evaluation of the behaviour of masonry infilled r/c frames", in 9th World Conference on Earthquake Engineering, San Francisco, USA. Vol. 6, (1984), 863-870.

6.     Al-Chaar, G., Non-ductile behavior of reinforced concrete frames with masonry infill panels subjected to in-plane loading., DTIC Document. (1998)

7.     Crisafulli, F., Carr, A. and Park, R., "Analytical modelling of infilled frame structures-a general review", Bulletin-New Zealand Society for Earthquake Engineering,  Vol. 33, No. 1, (2000), 30-47.

8.     Rots, J., "Numerical simulation of cracking in structural masonry", Heron,  Vol. 36, No. 2, (1991), 49-63.

9.     Lotfi, H.R. and Shing, P.B., "Interface model applied to fracture of masonry structures", Journal of Structural Engineering,  Vol. 120, No. 1, (1994), 63-80.

10.   Lourenço, P.B. and Rots, J.G., "Multisurface interface model for analysis of masonry structures", Journal of Engineering Mechanics,  Vol. 123, No. 7, (1997), 660-668.

11.   Mehrabi, A.B. and Shing, P.B., "Finite element modeling of masonry-infilled rc frames", Journal of Structural Engineering,  Vol. 123, No. 5, (1997), 604-613.

12.   Mehrabi, A.B., "Behavior of masonry-infilled rc frames subjected to lateral loading", University of Colorado, Boulder, PhD Dissertation,,  (1994),

13.   Al-Chaar, G.L. and Mehrabi, A., Constitutive models for nonlinear finite element analysis of masonry prisms and infill walls., DTIC Document. (2008)

14.   Stavridis, A. and Shing, P., "Finite-element modeling of nonlinear behavior of masonry-infilled rc frames", Journal of Structural Engineering,  Vol. 136, No. 3, (2010), 285-296.

15.   Koutromanos, I., Stavridis, A., Shing, P.B. and Willam, K., "Numerical modeling of masonry-infilled rc frames subjected to seismic loads", Computers & Structures,  Vol. 89, No. 11, (2011), 1026-1037.

16.   Bv, T.D., "Diana finite element analysis user’s manual release 9.3", Delft, The Netherlands,  (2008).

17.   Rashid, Y., "Ultimate strength analysis of prestressed concrete pressure vessels", Nuclear Engineering and Design,  Vol. 7, No. 4, (1968), 334-344.

18.   Thorenfeldt, E., Tomaszewicz, A. and Jensen, J., "Mechanical properties of high-strength concrete and application in design", in Proceedings of the Symposium “Utilization of High Strength Concrete. (1987), 149-159.

19.   Popovics, S., "A numerical approach to the complete stress-strain curve of concrete", Cement and Concrete Research,  Vol. 3, No. 5, (1973), 583-599.

20.   Giambanco, G. and Di Gati, L., "A cohesive interface model for the structural mechanics of block masonry", Mechanics Research Communications,  Vol. 24, No. 5, (1997), 503-512.

21.   Reyes, E., Gálvez, J., Casati, M., Cendón, D., Sancho, J. and Planas, J., "An embedded cohesive crack model for finite element analysis of brickwork masonry fracture", Engineering Fracture Mechanics,  Vol. 76, No. 12, (2009), 1930-1944.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir