IJE TRANSACTIONS C: Aspects Vol. 27, No. 6 (June 2014) 939-944   

downloaded Downloaded: 257   viewed Viewed: 2318

Z. S. Seyedraoufi, S. Mirdamadi and S. Rastegari
( Received: September 11, 2013 – Accepted: December 12, 2013 )

Abstract    Magnesium has been recently recognized as a biodegradation metal for bone substitute application. In the present work, porous magnesium-zinc scaffolds were prepared by powder metallurgical process and nano hydroxyapatite (HAP) coating on the Mg-3Zn (wt.%) scaffold was prepared by pulse electrodeposition and alkali treatment processes to improve the corrosion resistance of scaffold. The results indicated the as-deposited coating consists of HAP, DCPD and OCP with needle-like and plate-like structures and the post-treated coating was composed of needle-like particles of nano HAP that developed almost perpendicularly to the substrate. Electrochemical tests showed that the corrosion potential of scaffold significantly increased from –1.475 to –1.365 V and the corrosion current density reduced 1.5-fold in comparison to the scaffold modified by nano hydroxyapatite coating.


Keywords    Biodegradable Mg–Zn scaffold, Hydroxyapatite coating, electrodeposition, alkali treatment, Corrosion resistance


چکیده    منیزیم اخیرا به عنوان یک فلز زیست تخریب پذیر جهت کاربرد جایگزین استخوان شناخته شده است. در کار حاضر، داربست های منیزیم-روی متخلخل از طریق فرآیند متالورژی پودر آماده شدند و پوشش نانوهیدروکسی آپاتیت بر روی داربست منیزیمی حاوی 3 درصد وزنی عنصر روی توسط فرآیندهای رسوب الکتریکی پالسی و عملیات قلیایی جهت بهبود مقاومت خوردگی داربست ایجاد شد. نتایج نشان داد پوشش حاصل از فرآیند رسوب الکتریکی پالسی شامل HAP با ساختار شبه سوزنی و مقداری نیز شامل ترکیبات DCPD وOCP با ساختار شبه پلیتی می باشد. پوشش حاصل از عملیات قلیایی نیز از ذرات شبه سوزنی نانو HAP تقریبا عمود بر زیرپایه تشکیل شده بود. تست های الکتروشیمیایی نشان داد که پتانسیل خوردگی داربست به طور قابل توجه از 1.475- به 1.365- ولت افزایش و دانسیته چریان خوردگی در حدود یک و نیم برابر در مقایسه با داربست اصلاح شده توسط پوشش نانو هیدروکسی آپاتیت کاهش یافت.



1.     Zhuang, H., Han, Y. and Feng, A., "Preparation, mechanical properties and in vitro  biodegradation of porous magnesium scaffolds", Materials Science and Engineering: C,  Vol. 28, No. 8, (2008), 1462-1466.

2.     Wen, C., Mabuchi, M., Yamada, Y., Shimojima, K., Chino, Y. and Asahina, T., "Processing of biocompatible porous Ti and Mg", Scripta Materialia,  Vol. 45, No. 10, (2001), 1147-1153.

3.     Atrens, A., Liu, M. and Zainal Abidin, N.I., "Corrosion mechanism applicable to biodegradable magnesium implants", Materials Science and Engineering: B,  Vol. 176, No. 20, (2011), 1609-1636.

4.     Wen, C., Guan, S., Peng, L., Ren, C., Wang, X. and Hu, Z., "Characterization and degradation behavior of AZ31 alloy surface modified by bone-like hydroxyapatite for implant applications", Applied Surface Science,  Vol. 255, No. 13, (2009), 6433-6438.

5.     Gu, X., Zheng, Y., Zhong, S., Xi, T., Wang, J. and Wang, W., "Corrosion of, and cellular responses to Mg–Zn–Ca bulk metallic glasses", Biomaterials,  Vol. 31, No. 6, (2010), 1093-1103.

6.     Kaya, A., Eliezer, D., Ben-Hamu, G., Golan, O., Na, Y. and Shin, K., "Microstructure and corrosion resistance of alloys of the Mg-Zn-Ag system", Metal Science and Heat Treatment,  Vol. 48, No. 11-12, (2006), 524-530.

7.     Yin, D.-S., Zhang, E.-L. and Zeng, S.-Y., "Effect of zn on mechanical property and corrosion property of extruded Mg-Zn-Mn alloy", Transactions of Nonferrous Metals Society of China,  Vol. 18, No. 4, (2008), 763-768.

8.     Zhang, E., Yin, D., Xu, L., Yang, L. and Yang, K., "Microstructure, mechanical and corrosion properties and biocompatibility of Mg–Zn–Mn alloys for biomedical application", Materials Science and Engineering: C,  Vol. 29, No. 3, (2009), 987-993.

9.     Wang, H., Guan, S., Wang, X., Ren, C. and Wang, L., "In vitro degradation and mechanical integrity of Mg–Zn–Ca alloy coated with Ca-deficient hydroxyapatite by the pulse electrodeposition process", Acta Biomaterialia,  Vol. 6, No. 5, (2010), 1743-1748.

10.   Saremi, M. and Motaghi Golshan, B., "Electrodeposition of nano size hydroxyapatite coating on Ti alloy", Iranian Journal of Materials Science and Engineering,  Vol. 3, No. 3, (2006), 1-5.

11.   Song, Y., Shan, D. and Han, E., "Electrodeposition of hydroxyapatite coating on az91d magnesium alloy for biomaterial application", Materials Letters,  Vol. 62, No. 17, (2008), 3276-3279.

12.   Li, W., Guan, S., Chen, J., Hu, J., Chen, S., Wang, L. and Zhu, S., "Preparation and in vitro degradation of the composite coating with high adhesion strength on biodegradable mg–zn–ca alloy", Materials Characterization,  Vol. 62, No. 12, (2011), 1158-1165.

13.   Chun-Yan, Z., Rong-Chang, Z., Cheng-Long, L. and Jia-Cheng, G., "Comparison of calcium phosphate coatings on Mg–Al and Mg–Ca alloys and their corrosion behavior in hank's solution", Surface and Coatings Technology,  Vol. 204, No. 21, (2010), 3636-3640.

14.   Meng, E., Guan, S., Wang, H., Wang, L., Zhu, S., Hu, J., Ren, C., Gao, J. and Feng, Y., "Effect of electrodeposition modes on surface characteristics and corrosion properties of fluorine-doped hydroxyapatite coatings on Mg–Zn–Ca alloy", Applied Surface Science,  Vol. 257, No. 11, (2011), 4811-4816.

15.   Kokubo, T. and Takadama, H., "How useful is sbf in predicting in vivo bone bioactivity?", Biomaterials,  Vol. 27, No. 15, (2006), 2907-2915.

16.   Kannan, M.B. and Raman, R., "In vitro degradation and mechanical integrity of calcium-containing magnesium alloys in modified-simulated body fluid", Biomaterials,  Vol. 29, No. 15, (2008), 2306-2314.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir