IJE TRANSACTIONS C: Aspects Vol. 27, No. 6 (June 2014) 991-1004   

downloaded Downloaded: 235   viewed Viewed: 2185

M. H. Heydari and N. Choupani
( Received: August 29, 2013 – Accepted: December 12, 2013 )

Abstract    In this paper a new method to determine the fracture properties and strain energy release rate for Carbon- Polyester composite has been introduced. Fracture characteristics such as critical stress intensity factor and critical strain energy release rate for mode I, mode II and mixed mode loading were determined using Arcan type specimen. 130 layers of carbon fiber polyester woven composite with each of 0.2mm thickness were put on each other. Theoretical studies to determine strain energy release rate were done using three methods: Corrected Beam Theory (CBT), Compliance Calibration Method (CCM), Virtual Crack Closure Technique (VCCT), and results were recorded and were compared with the results from experimental and numerical attempts. Critical loads were recorded with experimental attempts then applied to the finite element software. Results were recorded and compared with each other to determine the best method. Results show that compliance calibration method and virtual crack closure technique determine strain energy release rate value closer to J-integral in comparison with corrected beam theory. Finally, the fracture surfaces were examined by scanning electron microscope to gain insight the failure responses that shows the fracture surface for mode II is rougher than the fracture surface for mode I and mixed mode.


Keywords    Arcan, Fracture, Lamination, Interlaminar


چکیده    در اين مقاله يک روش جديد براي تعيين خواص شکست و نرخ رها سازي انرژي کرنشي کامپوزيت لايه اي کربن- اپوکسي معرفي شده است. پارامترهاي شکست نظير ضريب شدت تنش بحراني و نرخ رها سازي انرژي کرنشي براي مود يک، مود دو و مودهاي مرکب بارگذاري به کمک نمونة آرکان بدست آورده شدند. در اين مقاله 130 لايه کامپوزيت کربن- اپوکسي بافته شده با ضخامت هر لايه 2/0 ميليمتر روي يکديگر قرار داده شد. مطالعات تئوري به منظور بدست آوردن نرخ رها سازي انرژي کرنشي بر اساس سه روش CCM, VCCT, CBT انجام گرفت. در پايان نتايج ثبت شده و با نتايج مطالعات عددي و تجربي مقايسه شدند. به کمک آزمايشات تجربي، بارهاي بحراني از طريق آزمايشات با نرخ بارگزاري ثابت بدست آورده شدند و سپس به نرم افزار المان محدود اعمال شدند. مطالعات عددي در محيط نرم افزار آباکوس و روش انتگرال J انجام گرفت. نتايج حاصله از روش هاي مختلف با هم مقايسه شده و بهترين روش براي تحليل مشخص شد. نتايج پژوهش بيان مي کنند که نرخ انرژي کرنشي بدست آمده از روش هاي CCM و VCCT در مقايسه با روش CBT به روش انتگرال J نرديکتر ميباشد. در پايان، سطوح شکست تحت آزمايشات شکست نگاري به منظور مطالعة دقيق سطوح شکست در هر مود قرار گرفت. اين تصاوير بيان ميکنند که سطوح شکست مد دوم از مد يک و مدهاي مرکب سخت تر مي باشد.



1.     Gdoutos, E.E., "Fracture mechanics: An introduction", Springer,  Vol. 123,  (2006).

2.     Liu, P. and Zheng, J., "On the through-the-width multiple delamination, and buckling and postbuckling behaviors of symmetric and unsymmetric composite laminates", Applied Composite Materials,  Vol. 20, No. 6, (2013), 1147-1160.

3.     Argüelles, A., Viña, J., Canteli, A. and Lopez, A., "Influence of the matrix type on the mode i fracture of carbon-epoxy composites under dynamic delamination", Experimental Mechanics,  Vol. 51, No. 3, (2011), 293-301.

4.     Shanmugam, V., Penmetsa, R., Tuegel, E. and Clay, S., "Stochastic modeling of delamination growth in unidirectional composite dcb specimens using cohesive zone models", Composite Structures,  Vol. 102, (2013), 38-60.

5.     Ullah, H., Harland, A.R. and Silberschmidt, V.V., "Experimental and numerical analysis of damage in woven gfrp composites under large-deflection bending", Applied Composite Materials,  Vol. 19, No. 5, (2012), 769-783.

6.     Chen, D. and Dai, L., "Delamination growth of laminated circular plates under in-plane loads and movable boundary conditions", Communications in Nonlinear Science and Numerical Simulation,  Vol. 18, No. 11, (2013), 3238-3249.

7.     D5528-94a, American Society for Testing and Materials  ASTM Standard, "Test method for mode i interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites", West Conshohocken,  (2001).

8.     Wang, D., Ye, L., Tang, Y. and Lu, Y., "Monitoring of delamination onset and growth during mode I and mode ii interlaminar fracture tests using guided waves", Composites Science and Technology,  Vol. 72, No. 2, (2012), 145-151.

9.     Arrese, A., Carbajal, N., Vargas, G. and Mujika, F., "A new method for determining mode II r-curve by the end-notched flexure test", Engineering Fracture Mechanics,  Vol. 77, No. 1, (2010), 51-70.

10.   Rajabi, A. and Kadkhodayan, M., "An investigation into the deep drawing of fiber-metal laminates based on glass fiber reinforced polypropylene", International Journal of Engineering-Transactions C: Aspects,  Vol. 27, No. 3, (2013), 349.

11.   Liu, P. and Islam, M., "A nonlinear cohesive model for mixed-mode delamination of composite laminates", Composite Structures,  Vol. 106, (2013), 47-56.

12.   Peng, L., Xu, J., Zhang, J. and Zhao, L., "Mixed mode delamination growth of multidirectional composite laminates under fatigue loading", Engineering Fracture Mechanics,  Vol. 96, No., (2012), 676-686.

13.   Keshava Kumar, S., Ganguli, R. and Harursampath, D., "Partial delamination modeling in composite beams using a finite element method", Finite Elements in Analysis and Design,  Vol. 76, No., (2013), 1-12.

14.   Kazemi, M.T. and Zakeri, I., "Mixed mode fracture in reinforced concrete with low volume friction of steel fibers", International Journal of Engineering,  Vol. 24, No. 1, (2011), 1-18.

15.   Shokrieh, M., Heidari-Rarani, M. and Rahimi, S., "Influence of curved delamination front on toughness of multidirectional dcb specimens", Composite Structures,  Vol. 94, No. 4, (2012), 1359-1365.

16.   Gong, X., Hurez, A. and Verchery, G., "On the determination of delamination toughness by using multidirectional dcb specimens", Polymer Testing,  Vol. 29, No. 6, (2010), 658-666.

17.   Bennati, S., Colleluori, M., Corigliano, D. and Valvo, P.S., "An enhanced beam-theory model of the asymmetric double cantilever beam (ADCB) test for composite laminates", Composites Science and Technology,  Vol. 69, No. 11, (2009), 1735-1745.

18.   Heydari, M.H., Choupani, N. and Shameli, M., "Experimental and numerical investigation of mixed-mode interlaminar fracture of carbon-polyester laminated woven composite by using arcan set-up", Applied Composite Materials,  Vol. 18, No. 6, (2011), 499-511.

19.   Nikbakht, M., Choupani, N. and Hosseini, S., "2d and 3d interlaminar fracture assessment under mixed-mode loading conditions", Materials Science and Engineering: A,  Vol. 516, No. 1, (2009), 162-168.

20.   Manual, A.U.s., "Version 6.5, hibbitt, karlsson and sorensen", Inc., Pawtucket, RI,  (2004).

21.   Agius, S.L., Magniez, K.J. and Fox, B.L., "Fracture behaviour of a rapidly cured polyethersulfone toughened carbon fibre/epoxy composite", Composite Structures,  Vol. 92, No. 9, (2010), 2119-2127.

22.   Shokrieh, M. and Zeinedini, A., "A novel method for calculation of strain energy release rate of asymmetric double cantilever laminated composite beams", Applied Composite Materials, (2013), 1-17.

23.   De Moura, M., Oliveira, J., Morais, J. and Xavier, J., "Mixed-mode I/II wood fracture characterization using the mixed-mode bending test", Engineering Fracture Mechanics,  Vol. 77, No. 1, (2010), 144-152.

24.   Shokrieh, M., Rajabpour-Shirazi, H., Heidari-Rarani, M. and Haghpanahi, M., "Simulation of mode I delamination propagation in multidirectional composites with r-curve effects using vcct method", Computational Materials Science,  Vol. 65,  (2012), 66-73.

25.   Ducept, F., Davies, P. and Gamby, D., "Mixed mode failure criteria for a glass/epoxy composite and an adhesively bonded composite/composite joint", International Journal of Adhesion and Adhesives,  Vol. 20, No. 3, (2000), 233-244.

26.   Heydari, M.H. and Choupani, N., "Effects of thickness on fracture toughness of carbon/polyester composite", Key Engineering Materials,  Vol. 471, (2011), 886-891.

27.   Choupani, N., "Characterization of fracture in adhesively bonded double-lap joints", International Journal of Adhesion and Adhesives,  Vol. 29, No. 8, (2009), 761-773.

28.   Gning, P.B., Delsart, D., Mortier, J. and Coutellier, D., "Through-thickness strength measurements using arcan’s method", Composites Part B: Engineering,  Vol. 41, No. 4, (2010), 308-316.

29.   Dharmawan, F., Simpson, G., Herszberg, I. and John, S., "Mixed mode fracture toughness of gfrp composites", Composite Structures,  Vol. 75, No. 1, (2006), 328-338.

30.   "Astm e399.”standard test method for plane strain fracture toughness and strain energy release rate of metallic materials”. In: Annual book of astm standards. (1983).

31.   "Astm d5045, “standard test method for plane strain fracture toughness and strain energy release rate of plastic materials”. In: Annual book of astm standards ",  (1995).

32.   Hojo, M., Ando, T., Tanaka, M., Adachi, T., Ochiai, S. and Endo, Y., "Modes I and II interlaminar fracture toughness and fatigue delamination of cf/epoxy laminates with self-same epoxy interleaf", International Journal of Fatigue,  Vol. 28, No. 10, (2006), 1154-1165.

33.   Yadav, S., Kumar, V. and Verma, S.K., "Fracture toughness behaviour of carbon fibre epoxy composite with kevlar reinforced interleave", Materials Science and Engineering: B,  Vol. 132, No. 1, (2006), 108-112.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir