|

|
IJE TRANSACTIONS C: Aspects Vol. 27, No. 6 (June 2014) 951-960
|
Downloaded:
397 |
|
Viewed:
2413 |
|
|
A SIZE-DEPENDENT BERNOULLI-EULER BEAM FORMULATION BASED ON A NEW MODEL OF COUPLE STRESS THEORY
|
|
|
R. Akbari Alashti and A. H. Abolghasemi
|
|
|
( Received:
September 14, 2013
– Accepted: November 07, 2013 )
|
|
|
Abstract
In this paper, a size-dependent
formulation for the Bernoulli-Euler beam is developed based on a new model of
couple
stress theory presented by Hadjesfandiari and Dargush. The constitutive
equation obtained in this new model, consists of
only one length scale
parameter that is capable of capturing the micro-structural size effect in
predicting the
mechanical behavior of the structure. Having one length scale
parameter is claimed to be an advantage of the model in
comparison with the
classical couple stress theory. The governing equations and boundary conditions
of the
Bernoulli-Euler beam are developed using the variational formulation and
the Hamilton principle. The static bending and
free vibration problems of a
Bernoulli-Euler beam with various boundary conditions are solved. Numerical
results
demonstrate that the value of deflection predicted by the new model is
lower than that of the classical theory. It is
also found that natural
frequencies obtained by the present couple stress model are higher than those
predicted by the
classical theory. The differences between results obtained by
the present model and the classical theory become
significant as the thickness
of the beam gets close to the length scale parameter of the beam material.
|
|
|
Keywords
Bernoulli-Euler beam, couple stress theory, microstructural effect, static bending, free vibration
|
|
|
چکیده
در اين مقاله،
با استفاده از مدل جديد کوپل تنش ارائه شده توسط Hadjesfandiari و Dargush، فرمول بندي وابسته به
اثر اندازه ريزساختار ماده براي يک تير اويلر- برنولي توسعه داده شده است.
روابط ساختاري بدست آمده در اين مدل جديد، شامل يک پارامتر مقياس طولي ماده است که
اين تئوري را قادر به پيش بيني رفتار مکانيکي مواد ناشي از تاثير اندازه ريزساختار
مي سازد. داشتن تنها يک پارامتر مقياس طولي ماده يکي از مزيت هاي اين مدل در
مقايسه با تئوري کلاسيک کوپل تنش عنوان شده است. معادلات حاکم و شرايط مرزي تير
اويلر- برنولي با استفاده از روش وردشي و اصل هميلتون بدست آمده و مسائل خمش
استاتيکي و ارتعاش آزاد يک تير اويلر- برنولي با شرايط مرزي مختلف حل شده اند.
نتايج عددي نشان مي دهند که مقدار خيز پيش بيني شده در مدل جديد کمتر از مقدار پيش
بيني شده در تئوري الاستيسيته کلاسيک مي باشد. همچنين فرکانس هاي ارتعاش آزاد بدست
آمده در اين تئوري بالاتر از تئوري کلاسيک مي باشد. تفاوت بين جوابهاي بدست آمده
از تئوري کوپل تنش حاضر و تئوری کلاسيک با نزديک شدن مقدار ضخامت تير به پارامتر
مقياس طولي ماده، زياد مي شود.
|
|
References
1.
Fleck, N., Muller, G., Ashby, M. and Hutchinson, J.,
"Strain gradient plasticity: Theory and experiment", Acta
Metallurgica et Materialia, Vol.
42, No. 2, (1994), 475-487.
2.
Ma, Q. and
Clarke, D.R., "Size dependent hardness of silver single crystals",
Journal of
Materials Research, Vol. 10, No. 04, (1995), 853-863.
3.
Stölken, J. and
Evans, A., "A microbend test method for measuring the plasticity length
scale", Acta Materialia, Vol.
46, No. 14, (1998), 5109-5115.
4.
Chong, A. and
Lam, D.C., "Strain gradient plasticity effect in indentation hardness of
polymers", Journal of Materials Research,
Vol. 14, No. 10, (1999), 4103-4110.
5.
McFarland, A.W.
and Colton, J.S., "Role of material microstructure in plate stiffness with
relevance to microcantilever sensors", Journal of Micromechanics and
Microengineering, Vol. 15, No.
5, (2005), 1060.
6.
Mindlin, R. and
Tiersten, H., "Effects of couple-stresses in linear elasticity", Archive
for Rational Mechanics and Analysis,
Vol. 11, No. 1, (1962), 415-448.
7.
Toupin, R.A.,
"Elastic materials with couple-stresses", Archive for Rational Mechanics
and Analysis, Vol. 11, No. 1,
(1962), 385-414.
8.
Koiter, W.,
"Couple stresses in the theory of elasticity, i and ii", in Nederl.
Akad. Wetensch. Proc. Ser. B. Vol. 67, (1964), 17-29.
9.
Anthoine, A.,
"Effect of couple-stresses on the elastic bending of beams", International
Journal of Solids and Structures,
Vol. 37, No. 7, (2000), 1003-1018.
10.
Zhou, S. and Li,
Z., "Length scales in the static and dynamic torsion of a circular
cylindrical micro-bar", Journal of Shandong University of Technology, Vol. 31, No. 5, (2001), 401-407.
11.
Asghari, M.,
Kahrobaiyan, M., Rahaeifard, M. and Ahmadian, M., "Investigation of the
size effects in timoshenko beams based on the couple stress theory", Archive
of Applied Mechanics, Vol. 81,
No. 7, (2011), 863-874.
12.
Yang, F., Chong,
A., Lam, D. and Tong, P., "Couple stress based strain gradient theory for
elasticity", International Journal of Solids and Structures, Vol. 39, No. 10, (2002), 2731-2743.
13.
Park, S. and Gao,
X., "Bernoulli–euler beam model based on a modified couple stress
theory", Journal of Micromechanics and Microengineering, Vol. 16, No. 11, (2006), 2355.
14.
Kong, S., Zhou,
S., Nie, Z. and Wang, K., "The size-dependent natural frequency of Bernoulli–Euler
micro-beams", International Journal of Engineering Science, Vol. 46, No. 5, (2008), 427-437.
15.
Asghari, M.,
Ahmadian, M., Kahrobaiyan, M. and Rahaeifard, M., "On the size-dependent
behavior of functionally
graded micro-beams", Materials & Design, Vol. 31, No. 5, (2010), 2324-2329.
16.
Ma, H., Gao,
X.-L. and Reddy, J., "A microstructure-dependent timoshenko beam model
based on a modified couple stress theory", Journal of the Mechanics and
Physics of Solids, Vol. 56, No.
12, (2008), 3379-3391.
17.
Asghari, M.,
Rahaeifard, M., Kahrobaiyan, M. and Ahmadian, M., "The modified couple
stress functionally graded timoshenko beam formulation", Materials
& Design, Vol. 32, No. 3,
(2011), 1435-1443.
18.
Asghari, M.,
Kahrobaiyan, M. and Ahmadian, M., "A nonlinear timoshenko beam formulation
based on the modified couple stress theory", International Journal of
Engineering Science, Vol. 48,
No. 12, (2010), 1749-1761.
19.
Şimşek, M.,
Kocatürk, T. and Akbaş, Ş.D., "Static bending of a functionally graded
microscale timoshenko beam based on the modified couple stress theory", Composite
Structures, Vol. 95, No.,
(2013), 740-747.
20.
Wanji, C., Chen,
W. and Sze, K., "A model of composite laminated reddy beam based on a modified couple-stress
theory", Composite Structures,
Vol. 94, No. 8, (2012), 2599-2609.
21.
Ke, L.-L., Wang,
Y.-S., Yang, J. and Kitipornchai, S., "Nonlinear free vibration of
size-dependent functionally graded microbeams", International Journal of
Engineering Science, Vol. 50,
No. 1, (2012), 256-267.
22.
Wang, L., Xu, Y.
and Ni, Q., "Size-dependent vibration analysis of three-dimensional
cylindrical microbeams based on modified couple stress theory: A unified
treatment", International Journal of Engineering Science, Vol. 68, No., (2013), 1-10.
23.
Ghayesh, M.H.,
Farokhi, H. and Amabili, M., "Nonlinear dynamics of a microscale beam based
on the modified couple stress theory", Composites Part B: Engineering, Vol. 50, (2013), 318-324.
24.
Hadjesfandiari,
A.R. and Dargush, G.F., "Couple stress theory for solids", International
Journal of Solids and Structures,
Vol. 48, No. 18, (2011), 2496-2510.
25.
Şimşek, M.,
"Dynamic analysis of an embedded microbeam carrying a moving microparticle based on the modified
couple stress theory", International Journal of Engineering Science, Vol. 48, No. 12, (2010), 1721-1732.
26.
Rao, S.S.,
"Vibration of continuous systems, John Wiley & Sons, (2007).
|
|
|
|
|