Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 27, No. 8 (August 2014) 1167-1172   

downloaded Downloaded: 485   viewed Viewed: 1977

  A STUDY ON RATIO OF LOSS TO STORAGE MODULUS FOR THE BLOOD CLOT
 
S. Soleimani, G. Pennati and G. Dubini
 
( Received: February 21, 2014 – Accepted: April 17, 2014 )
 
 

Abstract    In this study the rheology of blood clot is measured with the help of rotational rheometer. Several shear strain (0.5, 1 and 2%) are applied with two frequencies (5 and 10 Hz) from the incipient time of clot formation and the response of the sample is measured with the form of shear stress and the phase lag which is interpreted with storage and loss moduli. In this study the ratio of loss to storage modulus is studied and the blood clot gel-point as the transition from viscoelastic fluid to viscoelastic solid is investigated.

 

Keywords    Blood clot, loss to storage modulus ratio, gel point

 

چکیده    در این مطالعه، رئولوژی لخته خو نبا استفاده از دستگاه رئومتر چرخشی اندازه گرفته می شود. تنشهای برشی متعددی (5/0، 1 و 2 درصد) در دو فرکانس (5 و 10 هرتز) از زمان اولیه تشکیل لخته به کار گرفته می شود و پاسخ نمونه به شکل تنش برشی و تاخیر فاز اندازه گیری می گردد که با مدول ذخیره سازی وکاهش تفسیر می شود. در این تحقیق، نسبت مدول کاهش به ذخیره سازی مورد مطالعه قرار گرفته و نقطه-ژل لخته خون به عنوان گذار ازسیال ویسکوالاستیک به جامد ویسکوالاستیک بررسی شده است. با افزایش فرکانس، "دلتا تن" قبل ازنقطه-ژل کاهش و بعد از نقطه-ژل افزایش می یابد که به ترتیب رفتار سیال ویسکوالاستیک و جامد ویسکوالاستیک را نشان می دهد. علاوه بر این،با افزایش تنش برشی، "دلتا تن" با نرخ پایین تری در حالت سیال (Ra1وRa3) وبا نرخ بالاتری در حالت جامد (Ra2 وRa4) تغییر می کند. همچنین نشان داده می شود که افزایش فشار برشی باعث تاخیر در تشکیل نقطه-ژل می گردد.

References   

1.     Alonso, M., Tascón, J., Hernández, F., Andreu, J., Albarrán, A. and Velázquez, M.T., "Complications with femoral access in cardiac cathetization. Impact of previous systematic femoral angiography and hemostasis with vasoseal-esr collagen plug", Revista Española de Cardiología,  Vol. 56, No. 06, (2003), 569-577.

2.     Zhang, F., Yang, Y., Hu, D., Lei, H. and Wang, Y., "Percutaneous coronary intervention (pci) versus coronary artery bypass grafting (cabg) in the treatment of diabetic patients with multi-vessel coronary disease: A metaanalysis, diabetes", Research and Clinical Practice,  Vol. 97, (2012), 178-184.

3.     Lefèvre, T., Garcia, E., Reimers, B., Lang, I., di Mario, C., Colombo, A., Neumann, F.-J., Chavarri, M.V., Brunel, P. and Grube, E., "X-sizer for thrombectomy in acute myocardial infarction improves st-segment resolutionresults of the x-sizer in ami for negligible embolization and optimal st resolution (x amine st) trial", Journal of the American College of Cardiology,  Vol. 46, No. 2, (2005), 246-252.

4.     Evans, P., Hawkins, K., Lawrence, M., Williams, R., Barrow, M., Thirumalai, N. and Williams, P., "Rheometry and associated techniques for blood coagulation studies", Medical Engineering & Physics,  Vol. 30, No. 6, (2008), 671-679.

5.     Anand, M., Rajagopal, K. and Rajagopal, K., "A viscoelastic fluid model for describing the mechanics of a coarse ligated plasma clot", Theoretical and Computational Fluid Dynamics,  Vol. 20, No. 4, (2006), 239-250.

6.     Schmitt, C., Hadj Henni, A. and Cloutier, G., "Characterization of blood clot viscoelasticity by dynamic ultrasound elastography and modeling of the rheological behavior", Journal of Biomechanics,  Vol. 44, No. 4, (2011), 622-629.

7.     Anand, M., Rajagopal, K. and Rajagopal, K., "A model incorporating some of the mechanical and biochemical factors underlying clot formation and dissolution in flowing blood: Review article", Journal of Theoretical Medicine,  Vol. 5, No. 3-4, (2003), 183-218.

8.     Liao, F.-L., LI, W. and Huang, S., "Hemorheological investigation of clotting by rotational viscometer", Clinical Hemorheology,  Vol. 7, No. 5, (1987), 671-677.

9.     Banerjee, R. and Puniyani, R., "Thromboviscometry as a tool for evaluation of thrombotic risk in systemic hypertension", Journal of Human Hypertension,  Vol. 14, No. 2, (2000).

10.   Verbiest, B.C.H., "Thrombus formation in aneurysms: An experimental study", Division of Cardiovascular Biomechanics, Eindhoven University of Technology, MSc thesis,  (2008),

11.   Olsen, A.K., Kornerup Hansen, A., Jespersen, J., Marckmann, P. and Bladbjerg, E.M., "The¤ pig as a model in blood coagulation and fibrinolysis research", Scandinavian Journal of Laboratory Animal Science,  Vol. 26, No. 4, (1999), 214-224.

12.   Campbell, N. A., " “Biology”, the benjamin/cummings publishing company, fourth editionedition", (1996).

13.   Velik-Salchner, C., Schnürer, C., Fries, D., Müssigang, P.R., Moser, P.L., Streif, W., Kolbitsch, C. and Lorenz, I.H., "Normal values for thrombelastography (rotemR) and selected coagulation parameters in porcine blood", Thrombosis Research,  Vol. 117, No. 5, (2006), 597-602.

14.   Søfteland, E., Framstad, T., Thorsen, T. and Holmsen, H., "Porcine platelets in vitro and in vivo studies: Relevance to human thrombosis research", European Journal of Haematology,  Vol. 49, No. 4, (1992), 161-173.

15.   Piechocka, I.K., Bacabac, R.G., Potters, M., MacKintosh, F.C. and Koenderink, G.H., "Structural hierarchy governs fibrin gel mechanics", Biophysical Journal,  Vol. 98, No. 10, (2010), 2281-2289.

16.   Carr Jr, M.E., "Development of platelet contractile force as a research and clinical measure of platelet function", Cell Biochemistry and Biophysics,  Vol. 38, No. 1, (2003), 55-78.

17.   Rosalina, T., "Blood clotting in time and space", (2013)..





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir