Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 27, No. 8 (August 2014) 1205-1214   

downloaded Downloaded: 290   viewed Viewed: 2154

  MULTI-CRITERIA LOGISTIC HUB LOCATION BY NETWORK SEGMENTATION UNDER CRITERIA WEIGHTS UNCERTAINTY (RESEARCH NOTE)
 
M. Yahyaei, M. Bashiri and Y. Garmeyi
 
( Received: March 03, 2013 – Accepted: November 07, 2013 )
 
 

Abstract    Third party service providers are locating logistic hub for operating their tasks. Finding a proper location helps them to have better performance in competitive environment. Multiple characteristics of proper location selection faces the decision maker to have a multi criteria decision making problem. Since the location decision is a long term planning, the robustness of the decision is getting more highlighted so a Meta-model can be used to reduce uncertainty effect. Hub facilities are reducing the serving cost due to economies of scale. In this paper in order to enhance such effect we applied the clustering analysis to find similar regions by consideration of different characteristics. The approach is implemented in an Iranian case study and the validity of the approach has been investigated.

 

Keywords    Logistic Hub, Multi criteria decision making, TOPSIS, Statistical Factorial Design, Clustering analysis,Meta-model

 

چکیده    شرکت­های خدمات لجستیکی طرف سوم برای اجرای وظایف لجستکی اقدام به برپایی­هاب­های لجستیکی می­نمایند. انتخاب بهترین مکان برای احداث این هاب­ها موجب عملکرد بهتر این شرکت­ها در فضای رقابتی می­شود. در نظر گرفتن ویژگی­های چندگانه­ برای انتخاب مکان مناسب باعث می­شود تا تصمیم­گیرنده با یک مساله چند ­معیاره روبه­رو باشد. از آنجایی که تصمیمات مکانیابی جزء برنامه­های بلند مدت هستند، استواری در اینگونه تصمیمات پررنگتر است. بنابراین استفاده از فرامدل می­تواند باعث کاهش اثر عدم قطعیت شود. با توجه به وجود صرفه­جوئى­هاى مقیاس در تسهیلات هاب، هزینه­های خدماتی آنها کاهش می­یابد. در این مقاله برای افزایش این اثر، از تحلیل خوشه­بندی برای پیدا کردن مناطق مشابه استفاده شده است تا ویژگی­های مختلف مناطق در آن ملاحظه شود. این رویکرد برای مطالعه مورد کشورایران استفاده شده است و اعتبار نتایج آن مورد تحقیق قرار گرفته است.

References   

 

1.     Chopra, S. and Meindl, P., "Supply chain management. Strategy, planning & operation, Springer,  (2007).

2.     Manzini, R., Gamberi, M., Gebennini, E. and Regattieri, A., "An integrated approach to the design and management of supply chain system", International Journal of Advanced Manufacturing Technology,  Vol. 37, No., (2008), 625-640.

3.     Aghazadeh, S.-M., "How to choose an effective third party logistics provider", Management Research News,  Vol. 26, No. 7, (2003), 50-58.

4.     Trappey, C.V., Lin, G.Y., Trappey, A.J., Liu, C. and Lee, W.-T., "Deriving industrial logistics hub reference models for manufacturing based economies", Expert Systems with Applications,  Vol. 38, No. 2, (2011), 1223-1232.

5.     Kwon, S., Park, K., Lee, C., Kim, S.-S., Kim, H.-J. and Liang, Z., Supply chain network design and transshipment hub location for third party logistics providers, in Computational science and its applications-iccsa, Springer. (2006) 928-933.

6.     Steenkamp, J.-B.E. and Ter Hofstede, F., "International market segmentation: Issues and perspectives", International Journal of Research in Marketing,  Vol. 19, No. 3, (2002), 185-213.

7.     Yegnanarayana, B., "Artificial neural networks, PHI Learning PVT. LTD.,  (2009).

8.     Punj, G. and Stewart, D.W., "Cluster analysis in marketing research: Review and suggestions for application", Journal of Marketing Research, (1983), 134-148.

9.     Kuo, R.J., Ho, L. and Hu, C., "Cluster analysis in industrial market segmentation through artificial neural network", Computers & Industrial Engineering,  Vol. 42, No. 2, (2002), 391-399.

10.   Blair, J.P. and Premus, R., "Major factors in industrial location: A review", Economic Development Quarterly,  Vol. 1, No. 1, (1987), 72-85.

11.   Yoon, K., "Systems selection by multiple attribute decision making, Univ. Mikrofilms Internat.,  (1981).

12.   Floudas, C.A. and Pardalos, P.M., "Encyclopedia of optimization, Springer,  (2008).

13.   Figueira, J., Greco, S. and Ehrgott, M., "Multiple criteria decision analysis: State of the art surveys, Springer,  Vol. 78,  (2005).

14.   Tavakkoli-Moghaddam, R., Heydar, M. and Mousavi, S., "An integrated ahp-vikor methodology for plant location selection", International Journal of Engineering-Transactions B: Applications,  Vol. 24, No. 2, (2011), 127.

15.   Hatami-Marbini, A. and Tavana, M., "An extension of the electre i method for group decision-making under a fuzzy environment", Omega,  Vol. 39, No. 4, (2011), 373-386.

16.   Marzouk, M., "Electre iii model for value engineering applications", Automation in Construction,  Vol. 20, No. 5, (2011), 596-600.

17.   Soner Kara, S., "Supplier selection with an integrated methodology in unknown environment", Expert Systems with Applications,  Vol. 38, No. 3, (2011), 2133-2139.

18.   Yang, Z., Bonsall, S. and Wang, J., "Approximate topsis for vessel selection under uncertain environment", Expert Systems with Applications,  Vol. 38, No. 12, (2011), 14523-14534.

19.   De Vos, C.J., Saatkamp, H.W., Nielen, M. and Huirne, R., "Sensitivity analysis to evaluate the impact of uncertain factors in a scenario tree model for classical swine fever introduction", Risk analysis,  Vol. 26, No. 5, (2006), 1311-1322.

20.   Van Groenendaal, W.J. and Kleijnen, J.P., "On the assessment of economic risk: Factorial design versus monte carlo methods", Reliability Engineering & System Safety,  Vol. 57, No. 1, (1997), 91-102.

21.   İc, Y.T., "An experimental design approach using topsis method for the selection of computer-integrated manufacturing technologies", Robotics and Computer - Integrated Manufacturing,  Vol. 28, No. 2, (2012), 245-256.

22.   Lee, H., Shi, Y., Nazem, S.M., Yeol Kang, S., Ho Park, T. and Ho Sohn, M., "Multicriteria hub decision making for rural area telecommunication networks", European Journal of Operational Research,  Vol. 133, No. 3, (2001), 483-495.

23.   Chou, C.-C., "Application of fmcdm model to selecting the hub location in the marine transportation: A case study in southeastern asia", Mathematical and Computer Modelling,  Vol. 51, No. 5, (2010), 791-801.

24.   Yu, J., Liu, Y., Chang, G.-L., Ma, W. and Yang, X., "Locating urban transit hubs: Multicriteria model and case study in china", Journal of Transportation Engineering,  Vol. 137, No. 12, (2011), 944-952.

25.   Azizi, M. and Memariani, A., "Using topsis for location analysis of wood industry plants: The case of iran", OR Insight,  Vol. 17, No. 4, (2004), 22-28.

26.   Behzadian, M., Khanmohammadi Otaghsara, S., Yazdani, M. and Ignatius, J., "A state-of the-art survey of topsis applications", Expert Systems with Applications,  Vol. 39, No. 17, (2012), 13051-13069.

27.   Montgomery, D.C., "Design and analysis of experiments, Wiley New York,  Vol. 7,  (1997).

28.   Härdle, W. and Simar, L., "Applied multivariate statistical analysis, Springer,  Vol. 2,  (2007).

29.   Cox, D.R., "Note on grouping", Journal of the American Statistical Association,  Vol. 52, No. 280, (1957), 543-547.

30.   MacQueen, J., "Some methods for classification and analysis of multivariate observations", in Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, California, USA. Vol. 1, (1967), 14.

31.   Jain, A.K., "Data clustering: 50 years beyond k-means", Pattern Recognition Letters,  Vol. 31, No. 8, (2010), 651-666.

32.   Hong, C.-W., "Using the taguchi method for effective market segmentation", Expert Systems with Applications,  Vol. 39, No. 5, (2012), 5451-5459.

33.   Rousseeuw, P.J., "Silhouettes: A graphical aid to the interpretation and validation of cluster analysis", Journal of Computational and Applied Mathematics,  Vol. 20, No., (1987), 53-65. .





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir