Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 27, No. 8 (August 2014) 1233-1242   

downloaded Downloaded: 227   viewed Viewed: 1834

  DISTRIBUTION DESIGN OF TWO RIVAL DECENTERALIZED SUPPLY CHAINS: A TWO-PERSON NONZERO SUM GAME THEORY APPROACH
 
A. Hafezalkotob, M. S. Babaei, A. Rasulibaghban and M. Noori-daryan
 
( Received: June 02, 2013 – Accepted: December 12, 2013 )
 
 

Abstract    We consider competition between two decentralized supply chains network under demand uncertainty. Each chain consists of one risk-averse manufacturer and a group of risk-averse retailers. These two chains present substitutable products to the geographical dispensed markets. The markets’ demands are contingent upon prices, service levels, and advertising efforts of two supply chains. We formulate the distribution design problem of two rival chains as a two-person nonzero sum game. Since strategic decisions of distribution designs often have priority over tactical ones, we first calculate the equilibrium of tactical decisions for each pair of distribution design scenarios. Then, according to the presented methodology, we find Nash equilibrium solutions of distribution network scenarios for two rival chains. Eventually, the research has concluded with a numerical example in order to illustrate the real applications of the methodology.

 

Keywords    Supply chain network, Distribution network design, Tactical and strategic decisions, Nash equilibrium, Non-zero sum game

 

چکیده    در اين تحقيق ما رقابت بين دو شبکه زنجيره تأمين غيرمتمرکز را تحت شرايط عدم قطعيت تقاضا در نظر گرفته‌ايم. هر يک از اين زنجيره‌ها از يک توليدکننده ريسک‌گريز و همچنين مجموعه‌اي از خرده‌فروشان ريسک‌گريز تشکيل شده است. اين دو زنجيره، کالاهاي قابل جايگزين را به بازارهايي ارائه مي‌کنند که در جغرافياي مشخصي استقرار يافته‌اند. تقاضاي بازارها به قيمت‌، سطح خدمت و ميزان تبليغات دو زنجيره وابسته است. ما مسأله طراحي شبکه توزيع دو زنجيره تأمين را در قالب يک بازي غيرمجموع صفر دو نفره مدلسازي کرده‌ايم. از آنجا که تصميمات استراتژيک طراحي شبکه توزيع نسبت به تصميمات تاکتيکي اغلب داراي اولويت است، ما تعادل تصميمات تاکتيکي را به ازاي هر جفت سناريو‌های توزيع محاسبه مي‌نماييم. آنگاه مطابق با متدولوژي ارائه شده، جواب تعادل نش را براي سناريو‌هاي شبکه توزيع دو زنجيره جستجو مي‌نماييم. در پايان، اين تحقيق با ارائه يک مثال عددي جهت تشريح کاربرد‌هاي عملي اين متدولوژي خاتمه مي‌يابد.

References   

1.     Kogan, K. and Tapiero, C.S., "Supply chain games: Operations management and risk valuation: Operations management and risk evaluation, Springer,  Vol. 113,  (2007).

2      Xiao, T. and Yang, D.," Price and service competition of supply chains with risk-averse retailers under Demand uncertainty", International Journal of Production Economics, Vol. 114, No. 1,, (2008), 187–200.

3.     Chandra, C. and Grabis, J., "Supply chain configuration: Concepts, solutions, and applications, Springer,  (2007).

4.     Hafezalkotob, A., Makui, A. and Sadjadi, S.J., "Strategic and tactical design of competing decentralized supply chain networks with risk-averse participants for markets with uncertain demand", Mathematical Problems in Engineering,  Vol. 2011, No., (2011).

5.     Ingene, C.A. and M. E. Parry, "Coordination and producer profit maximization: The multiple retailer channel", Journal of Retailing,  Vol. 71, No. 2, (1995), 129–151.

6.     Chen, F., Federgruen, A. and Zheng, Y.-S., "Coordination mechanisms for a distribution system with one supplier and multiple retailers", Management Science,  Vol. 47, No. 5, (2001), 693-708.

7.     Farahani, R.Z., Rezapour, S., Drezner, T. and Fallah, S., "Competitive supply chain network design: An overview of classifications, models, solution techniques and applications", Omega,  Vol. 45, No., (2014), 92-118.

8.     Hammami, R., Frein, Y. and Hadj-Alouane, A.B., "A strategic-tactical model for the supply chain design in the delocalization context: Mathematical formulation and a case study", International Journal of Production Economics,  Vol. 122, No. 1, (2009), 351-365.

9.     Zamarripa, M.A., Aguirre, A.M., Méndez, C.A. and Espuña, A., "Improving supply chain planning in a competitive environment", Computers & Chemical Engineering,  Vol. 42, No., (2012), 178-188.

10.   Badri, H., Bashiri, M. and Hejazi, T.H., "Integrated strategic and tactical planning in a supply chain network design with a heuristic solution method", Computers & Operations Research,  Vol. 40, No. 4, (2013), 1143-1154.

11.   Hafezalkotob, A. and Makui, A., "Modeling risk of losing a customer in a two-echelon supply chain facing an integrated competitor: A game theory approach", International Journal of Engineering,  Vol. 25, No. 1, (2012), 11-34.

12.   Meng, Q., Huang, Y. and Cheu, R.L., "Competitive facility location on decentralized supply chains", European Journal of Operational Research,  Vol. 196, No. 2, (2009), 487-499.

13.   Rezapour, S. and Farahani, R.Z., "Strategic design of competing centralized supply chain networks for markets with deterministic demands", Advances in Engineering Software,  Vol. 41, No. 5, (2010), 810-822.

14.   Hafezalkotob, A. and Makui, A., "Supply chains competition under uncertainty concerning player’s strategies and customer choice behavior: A generalized nash game approach", Mathematical Problems in Engineering,  Vol. 2012, No., (2012).

15.   Bar-Shira, Z. and Finkelshtain, I., "Two-moments decision models and utility-representable preferences", Journal of Economic Behavior & Organization,  Vol. 38, No. 2, (1999), 237-244.

16.   Chopra, S. and Meindl, P., "Supply chain management. Strategy, planning & operation, Springer,  (2007).

17.   Owen, G., Game theory. 1995, Academic Press.

18.   Nash Jr, J.F., "The bargaining problem", Econometrica: Journal of the Econometric Society,  Vol., No., (1950), 155-162.






International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir