Abstract




 
   

IJE TRANSACTIONS B: Applications Vol. 27, No. 8 (August 2014) 1251-1258   

downloaded Downloaded: 595   viewed Viewed: 3294

  EXPERIMENTAL INVESTIGATION OF MIXED CONVECTION HEAT TRANSFER IN VERTICAL TUBES BY NANOFLUID: EFFECTS OF REYNOLDS NUMBER AND FLUID TEMPERATURE
 
A. Rostamzadeh, K. Jafarpur, E. Goshtasbirad and M. M. Doroodmand
 
( Received: December 23, 2013 – Accepted: April 17, 2014 )
 
 

Abstract    An experimental investigation was carried out to study mixed convection heat transfer from Al2O3-water nanofluid inside a vertical, W-shaped, copper-tube with uniform wall temperature. The tests covered different ranges of some involved parameters including Reynolds number, temperature and particles volume fraction. The results showed that the rate of heat transfer coefficient improved with Reynolds number for average wall temperatures of 50 and 60 centigrade degree. Additionally, the heat transfer coefficient increased slightly with an increase of the Reynolds number. Interestingly, the pressure drop of nanofluid was very close to that of base fluid. Besides, a new correlation was proposed to calculate the Nusselt number in W-shaped tubes.

 

Keywords    nanofluid, mixed convection, alumina nanoparticles, heat transfer

 

چکیده    در این مطالعه انتقال حرارت جابجایی نانو سیال آلومینا، درون یک لوله مسی عمودی و W شکل با شرط مرزی دمای دیوار ثابت مورد مطالعه قرار گرفته است . آزمایشات انجام شده محدوده ای از پارامترها نظیر عدد رینولدز، دما و غلظت نانو ذرات را در بر می گیرد. نتایج نشان دهنده بهبود نرخ ضریب انتقال حرارت با عدد رینولدز در دمای متوسط دیواره 50 و 60 درجه سانتیگراد است. علاوه بر آن نرخ انتقال حرارت با افزایش عدد رینولدز اندکی افزایش می یابد. همچنین افت فشار نانو سیال بسیار نزدیک به سیال پایه است و در نهایت رابطه ای برای محاسبه عدد ناسلت درون لوله W شکل پیشنهاد شده است.

References   

 

1.        Chol, S., "Enhancing thermal conductivity of fluids with nanoparticles", ASME-Publications-Fed, Vol. 231, (1995), 99-106.

2.        Pak, B.C. and Cho, Y.I., "Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles", Experimental Heat Transfer an International Journal,  Vol. 11, No. 2, (1998), 151-170.

3.        Xuan, Y. and Li, Q., "Investigation on convective heat transfer and flow features of nanofluids", Journal of Heat transfer,  Vol. 125, No. 1, (2003), 151-155.

4.        Wen, D. and Ding, Y., "Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions", International Journal of Heat and Mass Transfer,  Vol. 47, No. 24, (2004), 5181-5188.

5.        Ding, Y., Alias, H., Wen, D. and Williams, R.A., "Heat transfer of aqueous suspensions of carbon nanotubes (cnt nanofluids)", International Journal of Heat and Mass Transfer,  Vol. 49, No. 1, (2006), 240-250.

6.        Li, C.H. and Peterson, G., "Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids)", Journal of Applied Physics,  Vol. 99, No. 8, (2006), 084314.

7.        Chien, H.-T., Tsai, C.-I., Chen, P.-H. and Chen, P.-Y., "Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid", in Electronic Packaging Technology Proceedings,. ICEPT. Fifth International Conference on, IEEE. (2003), 389-391.

8.        Tsai, C., Chien, H., Ding, P., Chan, B., Luh, T. and Chen, P., "Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance", Materials Letters,  Vol. 58, No. 9, (2004), 1461-1465.

9.        Ma, H., Wilson, C., Borgmeyer, B., Park, K., Yu, Q., Choi, S. and Tirumala, M., "Effect of nanofluid on the heat transport capability in an oscillating heat pipe", Applied Physics Letters,  Vol. 88, No. 14, (2006), 143116.

10.     Wen, D. and Ding, Y., "Effect on heat transfer of particle migration in suspensions of nanoparticles flowing through minichannels", in ASME 2nd International Conference on Microchannels and Minichannels, American Society of Mechanical Engineers, (2004), 939-946.

11.     Xuan, Y. and Roetzel, W., "Conceptions for heat transfer correlation of nanofluids", International Journal of Heat and Mass Transfer,  Vol. 43, No. 19, (2000), 3701-3707.

12.     Hwang, K.S., Jang, S.P. and Choi, S.U., "Flow and convective heat transfer characteristics of water-based Al2O3 nanofluids in fully developed laminar flow regime", International Journal of Heat and Mass Transfer,  Vol. 52, No. 1, (2009), 193-199.

13.     Metais, B. and Eckert, E., "Forced, mixed, and free convection regimes", Journal of Heat Transfer,  Vol. 86, No. 2 (1964), 291-296.

14.     Li, Q. and Xuan, Y., "Experimental investigation on transport properties of nanofluids", Heat Transfer Science and Technology,  Vol. 2000, (2000), 757-762.

15.     Zeinali Heris, S., Etemad, S.G. and Nasr Esfahany, M., "Experimental investigation of oxide nanofluids laminar flow convective heat transfer", International Communications in Heat and Mass Transfer,  Vol. 33, No. 4, (2006), 529-535.

16.     Mansour, R.B., Galanis, N. and Nguyen, C., "Developing laminar mixed convection of nanofluids in an inclined tube with uniform wall heat flux", International Journal of Numerical Methods for Heat & Fluid Flow,  Vol. 19, No. 2, (2009), 146-164.

17.     Hussein, A.M., Bakar, R.A. and Kadirgama, k., "Study of convection nanofluid heat transfer in the automotive cooling system", Case Studies in Thermal Engineering,  Vol. 2, No., (2014), 50-61.

18.     Ebrahimi, M., Farhadi, M., Sedighi, K. and Akbarzade, S., "Experimental investigation of force convection heat transfer in a car radiator filled with sio 2-water nanofluid", International Journal of Engineering-Transactions B: Applications,  Vol. 27, No. 2, (2013), 333.

19.     Saeedinia, M., Akhavan-Behabadi, M. and Nasr, M., "Experimental study on heat transfer and pressure drop of nanofluid flow in a horizontal coiled wire inserted tube under constant heat flux", Experimental Thermal and Fluid Science,  Vol. 36, (2012), 158-168.

20.     Chandrasekar, M., Suresh, S. and Chandra Bose, A., "Experimental studies on heat transfer and friction factor characteristics of Al2O3/water nanofluid in a circular pipe under laminar flow with wire coil inserts", Experimental Thermal and Fluid Science,  Vol. 34, No. 2, (2010), 122-130.

21.     Pirhayati, M., Akhavan, B.M. and Khayat, M., "Convective heat transfer of oil based nanofluid flow inside a circular tube", International Journal of Engineering-Transactions B: Applications,  Vol. 27, No. 2, (2013), 34-31.

22.     Brinkman, H., "The viscosity of concentrated suspensions and solutions", The Journal of Chemical Physics,  Vol. 20, No. 4, (1952), 571-571.

23.     Hamilton, R. and Crosser, O., "Thermal conductivity of heterogeneous two-component systems", Industrial & Engineering Chemistry Fundamentals,  Vol. 1, No. 3, (1962), 187-191.

24.     Streeter, V.L., Wylie, E.B. and Bedford, K.W., Fluid mechanics, WCB., McGraw-Hill. (1998)

25.     Jackson, J., Cotton, M. and Axcell, B., "Studies of mixed convection in vertical tubes", International Journal of Heat and Fluid Flow,  Vol. 10, No. 1, (1989), 2-15.

26.     . Sieder, E.N. and Tate, G.E., "Heat transfer and pressure drop of liquids in tubes", Industrial & Engineering Chemistry,  Vol. 28, No. 12, (1936), 1429-1435.

27.     . Nnanna, A.A., Fistrovich, T., Malinski, K. and Choi, S., "Thermal transport phenomena in buoyancy-driven nanofluids", in ASME International Mechanical Engineering Congress and Exposition, American Society of Mechanical Engineers. (2004), 571-578.

28.     . Nguyen, C., Desgranges, F., Roy, G., Galanis, N., Mare, T., Boucher, S. and Angue Mintsa, H., "Temperature and particle-size dependent viscosity data for water-based nanofluids–hysteresis phenomenon", International Journal of Heat and Fluid Flow,  Vol. 28, No. 6, (2007), 1492-1506.

29.      Yang, Y., Zhang, Z.G., Grulke, E.A., Anderson, W.B. and Wu, G., "Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow", International Journal of Heat and Mass Transfer,  Vol. 48, No. 6, (2005), 1107-1116.

30.     Xuan, Y. and Li, Q., "Heat transfer enhancement of nanofluids", International Journal of Heat and Fluid Flow,  Vol. 21, No. 1, (2000), 58-64.





International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir