IJE TRANSACTIONS B: Applications Vol. 27, No. 8 (August 2014) 1259-1268   

downloaded Downloaded: 314   viewed Viewed: 2147

M. K. Rath, S. K. Acharya, P. P. Patnnaik and S. Roy
( Received: October 26, 2013 – Accepted: April 17, 2014 )

Abstract    The necessity for decrease in consumption of conventional fuel, related energy and to promote the use of renewable sources such as biofuels, demands for the effective evaluation of the performance of engines based on laws of thermodynamics. Energy, exergy, entropy generation, mean gas temperature and exhaust gas temperature analysis of CI engine using diesel and karanja methyl ester blends at different compression ratios under full load and for different engine loads at compression ratio 18:1 are done in this paper using experimental data. Exergy efficiency, mean gas temperature, brake thermal efficiency increases with increase in compression ratio as well as load. Exhaust gas temperature, destruction of exergy and entropy generation decreases with increase in compression ratio and increases with increase in load for all blends of fuel.


Keywords    Karanja methyl ester, Exergy, Biofuels, Variable compression ratio, Diesel engine, Energy


چکیده    در مطالعه حاضر، نیاز به کاهش مصرف سوخت رایج و سوخت های فسیلی وابسته به آن است. بنابراین، برای بهبود استفاده از منابع تجدیدپذیر از قبیل سوخت های زیستی نیاز به تخمین موثر از عملکرد موتورها بر پایه قانون دوم ترمودینامیک می باشد. در این مقاله، تحلیل انرژی، اکسرژی، دمای متوسط گاز و دمای گاز خروجی موتور احتراق تراکمی (CI) با استفاده از مخلوط متیل استر کارانجا و دیزل انجام شده است. نتایج در نسبت های مختلف تحت بارگذاری کامل و در بارگذاری های مختلف موتور در نسبت 18:1 محاسبه شده است. مشاهده شد که بازده اکسرژی، دمای گاز متوسط، بازده ترمز حرارتی با افزایش در نسبت تراکم همانند بارگذاری افزایش می یابد. دمای گاز خروجی و تخریب اکسرژی برای همه مخلوط های سوخت با افزایش در نسبت تراکم کاهش و با افزایش در بارگذاری افزایش می یابد.



1.     Barnwal, B. and Sharma, M., "Prospects of biodiesel production from vegetable oils in india", Renewable and Sustainable Energy Reviews,  Vol. 9, No. 4, (2005), 363-378.

2.     Karekezi, S., "Poverty and energy in africa—a brief review", Energy Policy,  Vol. 30, No. 11, (2002), 915-919.

3.     Nwafor, O. and Rice, G., "Performance of rapeseed oil blends in a diesel engine", Applied Energy,  Vol. 54, No. 4, (1996), 345-354.

4.     Agarwal, A.K., "Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines", Progress in Energy and Combustion Science,  Vol. 33, No. 3, (2007), 233-271.

5.     Rakopoulos, C. and Giakoumis, E., "Second-law analyses applied to internal combustion engines operation", Progress in Energy and Combustion Science,  Vol. 32, No. 1, (2006), 2-47.

6.     Szargut, J., Morris, D.R. and Steward, F.R., "Exergy analysis of thermal, chemical, and metallurgical processes", (1987).

7.     Adrian, B., Advanced engineering thermodynamics., John Wiley & Sons, Inc. (1988)

8.     Caton, J.A., "On the destruction of availability (exergy) due to combustion processes—with specific application to internal-combustion engines", Energy,  Vol. 25, No. 11, (2000), 1097-1117.

9.     Caton, J.A., Operating characteristics of a spark-ignition engine using the second law of thermodynamics: Effects of speed and load., SAE Technical Paper.( 2000)

10.   Michael, P. and Anthony, M., "Engine testing theory and practice", SAE International, (1999).

11.   Azoumah, Y., Blin, J. and Daho, T., "Exergy efficiency applied for the performance optimization of a direct injection compression ignition (CI) engine using biofuels", Renewable Energy,  Vol. 34, No. 6, (2009), 1494-1500.

12.           Rath, M., Acharya, S. and Roy, S., "Thermodynamic analysis of compression ignition engine using neat karanja oil under varying compression ratio", International Journal of Ambient Energy,  (2014), 1-9.

International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir