IJE TRANSACTIONS B: Applications Vol. 27, No. 8 (August 2014) 1269-1276   

downloaded Downloaded: 770   viewed Viewed: 3360

M. Taherinejad, S. M. Hosseinalipoor and R. Madoliat
( Received: October 19, 2013 – Accepted: April 17, 2014 )

Abstract    The mathematical modeling of a gas network is a powerful tool in order to identify the behavior of system under the different conditions. The modeling can be performed both for the steady state and unsteady state conditions. It is possible to use the fluid flow basic governing equations or the electrical analogy concept for developing the model. The second approach provides a simpler and more robust model, especially in large networks with different and numerous components. In this study this approach has been used for studying the steady state behavior of a sample gas distribution network. The model is verified by comparing its results with some existing experimental and numerical data. The comparison shows a very good agreement between the two results.


Keywords    Natural Gas Transmission and Distribution Network Modeling, Steady State Analysis, Electrical Analogy, electrical element, Pipeline Resistance Model


چکیده    مدلسازي رياضي شبکه گاز، ابزاري قدرتمند به منظور شناخت رفتار سيستم در شرايط مختلف مي باشد. اين مدلسازي مي تواند در دو حالت پايا و ناپايا انجام پذيرد. به منظور توسعه مدل مناسب، مي توان از معادلات پايه حاکم بر جريان سيال و يا از مفهوم تشابه الکتريکي استفاده نمود. ديدگاه دوم در مدلسازي، شرايط به مراتب ساده تري را به مخصوص در مواجهه با شبکه هاي بزرگ با اجزاء فراوان فراهم مي کند. در اين مقاله، مدلسازي رفتار پاياي شبکه توزيع گاز با استفاده از نگرش تشابه الکتريکي صورت گرفته است. همچنين نتايج اين مدلسازي با نتايج برخي کارهاي موجود تجربي و عددي مقايسه شده است. مقايسه صورت گرفته توافق خوبي را بين نتايج نشان مي دهد.



1.     Ríos-Mercado, R.Z., Wu, S., Scott, L.R. and Boyd, E.A., "A reduction technique for natural gas transmission network optimization problems", Annals of Operations Research,  Vol. 117, No. 1-4, (2002), 217-234.

2.     Abdolahi, F., Mesbah, A., Boozarjomehry, R.B. and Svrcek, W.Y., "The effect of major parameters on simulation results of gas pipelines", International Journal of Mechanical Sciences,  Vol. 49, No. 8, (2007), 989-1000.

3.     Chebouba, A., Yalaoui, F., Smati, A., Amodeo, L., Younsi, K. and Tairi, A., "Optimization of natural gas pipeline transportation using ant colony optimization", Computers & Operations Research,  Vol. 36, No. 6, (2009), 1916-1923.

4.     Chaczykowski, M., Osiadacz, A. and Uilhoorn, F., "Exergy-based analysis of gas transmission system with application to yamal-europe pipeline", Applied Energy,  Vol. 88, No. 6, (2011), 2219-2230.

5.     Woldeyohannes, A.D. and Majid, M.A.A., "Simulation model for natural gas transmission pipeline network system", Simulation Modelling Practice and Theory,  Vol. 19, No. 1, (2011), 196-212.

6.     Brikić, D., "A gas distribution network hydraulic problem from practice", Petroleum Science and Technology,  Vol. 29, No. 4, (2011), 366-377.

7.     Kostowski, W.J. and Skorek, J., "Real gas flow simulation in damaged distribution pipelines", Energy,  Vol. 45, No. 1, (2012), 481-488.

8.     Najibi, H. and Taghavi, N., "Effect of different parameters on optimum design for high pressure natural gas trunk-lines", Journal of Natural Gas Science and Engineering,  Vol. 3, No. 4, (2011), 547-554.

9.     El-Shiekh, T., "The optimal design of natural gas transmission pipelines", Energy Sources, Part B: Economics, Planning, and Policy,  Vol. 8, No. 1, (2013), 7-13.

10.   Mohajeri, A., Mahdavi, I., Mahdavi-Amiri, N. and Tafazzoli, R., "Optimization of tree-structured gas distribution network using ant colony optimization: A case study", International Journal of Engineering-Transactions A: Basics,  Vol. 25, No. 2, (2011), 141.

11.   Noetinger, B. and Jarrige, N., "A quasi steady state method for solving transient darcy flow in complex 3d fractured networks", Journal of Computational Physics,  Vol. 231, No. 1, (2012), 23-38.

12.   Mohitpour, M., Golshan, H. and Murray, A., "Pipeline design & construction: A practical approach. ", American Society of Mechanical Engineers Press, New York(2000)

13.   Pinho, C., "Considerations about equations for steady state flow in natural gas pipelines", Journal of The Brazilian Society of Mechanical Sciences and Engineering, Vol. 29, (2007), 262-273

14.   Abbaspour, M., "Simulation and optimization of non-isothermal, one-dimensional single/two-phase flow in natural gas pipeline", Kansas State University,  (2005),

15.   Osiadacz, A., "Simulation and analysis of gas networks",  E. & F.N. SPON, London, (1987).

16.   Adewumi, M.A. and Zhou, J., "The development and testing of a new flow equation", in PSIG Annual Meeting, Pipeline Simulation Interest Group. (1995).

17.   Tao, W. and Ti, H., "Transient analysis of gas pipeline network", Chemical Engineering Journal,  Vol. 69, No. 1, (1998), 47-52.

18.   Behbahani-Nejad, M. and Bagheri, A., "The accuracy and efficiency of a matlab-simulink library for transient flow simulation of gas pipelines and networks", Journal of Petroleum Science and Engineering,  Vol. 70, No. 3, (2010), 256-265..


International Journal of Engineering
E-mail: office@ije.ir
Web Site: http://www.ije.ir